Description: Value of the spectrum of the ring R . Notation 1.1.1 of EGA p. 80. (Contributed by Thierry Arnoux, 2-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rspecval | ⊢ ( 𝑅 ∈ Ring → ( Spec ‘ 𝑅 ) = ( ( IDLsrg ‘ 𝑅 ) ↾s ( PrmIdeal ‘ 𝑅 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( IDLsrg ‘ 𝑟 ) = ( IDLsrg ‘ 𝑅 ) ) | |
| 2 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( PrmIdeal ‘ 𝑟 ) = ( PrmIdeal ‘ 𝑅 ) ) | |
| 3 | 1 2 | oveq12d | ⊢ ( 𝑟 = 𝑅 → ( ( IDLsrg ‘ 𝑟 ) ↾s ( PrmIdeal ‘ 𝑟 ) ) = ( ( IDLsrg ‘ 𝑅 ) ↾s ( PrmIdeal ‘ 𝑅 ) ) ) | 
| 4 | df-rspec | ⊢ Spec = ( 𝑟 ∈ Ring ↦ ( ( IDLsrg ‘ 𝑟 ) ↾s ( PrmIdeal ‘ 𝑟 ) ) ) | |
| 5 | ovex | ⊢ ( ( IDLsrg ‘ 𝑅 ) ↾s ( PrmIdeal ‘ 𝑅 ) ) ∈ V | |
| 6 | 3 4 5 | fvmpt | ⊢ ( 𝑅 ∈ Ring → ( Spec ‘ 𝑅 ) = ( ( IDLsrg ‘ 𝑅 ) ↾s ( PrmIdeal ‘ 𝑅 ) ) ) |