Metamath Proof Explorer


Theorem rspecval

Description: Value of the spectrum of the ring R . Notation 1.1.1 of EGA p. 80. (Contributed by Thierry Arnoux, 2-Jun-2024)

Ref Expression
Assertion rspecval ( 𝑅 ∈ Ring → ( Spec ‘ 𝑅 ) = ( ( IDLsrg ‘ 𝑅 ) ↾s ( PrmIdeal ‘ 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝑟 = 𝑅 → ( IDLsrg ‘ 𝑟 ) = ( IDLsrg ‘ 𝑅 ) )
2 fveq2 ( 𝑟 = 𝑅 → ( PrmIdeal ‘ 𝑟 ) = ( PrmIdeal ‘ 𝑅 ) )
3 1 2 oveq12d ( 𝑟 = 𝑅 → ( ( IDLsrg ‘ 𝑟 ) ↾s ( PrmIdeal ‘ 𝑟 ) ) = ( ( IDLsrg ‘ 𝑅 ) ↾s ( PrmIdeal ‘ 𝑅 ) ) )
4 df-rspec Spec = ( 𝑟 ∈ Ring ↦ ( ( IDLsrg ‘ 𝑟 ) ↾s ( PrmIdeal ‘ 𝑟 ) ) )
5 ovex ( ( IDLsrg ‘ 𝑅 ) ↾s ( PrmIdeal ‘ 𝑅 ) ) ∈ V
6 3 4 5 fvmpt ( 𝑅 ∈ Ring → ( Spec ‘ 𝑅 ) = ( ( IDLsrg ‘ 𝑅 ) ↾s ( PrmIdeal ‘ 𝑅 ) ) )