| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rspecbas.1 | ⊢ 𝑆  =  ( Spec ‘ 𝑅 ) | 
						
							| 2 |  | prmidlssidl | ⊢ ( 𝑅  ∈  Ring  →  ( PrmIdeal ‘ 𝑅 )  ⊆  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 3 |  | eqid | ⊢ ( IDLsrg ‘ 𝑅 )  =  ( IDLsrg ‘ 𝑅 ) | 
						
							| 4 |  | eqid | ⊢ ( LIdeal ‘ 𝑅 )  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 5 | 3 4 | idlsrgbas | ⊢ ( 𝑅  ∈  Ring  →  ( LIdeal ‘ 𝑅 )  =  ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) ) | 
						
							| 6 | 2 5 | sseqtrd | ⊢ ( 𝑅  ∈  Ring  →  ( PrmIdeal ‘ 𝑅 )  ⊆  ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) ) | 
						
							| 7 |  | eqid | ⊢ ( ( IDLsrg ‘ 𝑅 )  ↾s  ( PrmIdeal ‘ 𝑅 ) )  =  ( ( IDLsrg ‘ 𝑅 )  ↾s  ( PrmIdeal ‘ 𝑅 ) ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ ( IDLsrg ‘ 𝑅 ) )  =  ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) | 
						
							| 9 | 7 8 | ressbas2 | ⊢ ( ( PrmIdeal ‘ 𝑅 )  ⊆  ( Base ‘ ( IDLsrg ‘ 𝑅 ) )  →  ( PrmIdeal ‘ 𝑅 )  =  ( Base ‘ ( ( IDLsrg ‘ 𝑅 )  ↾s  ( PrmIdeal ‘ 𝑅 ) ) ) ) | 
						
							| 10 | 6 9 | syl | ⊢ ( 𝑅  ∈  Ring  →  ( PrmIdeal ‘ 𝑅 )  =  ( Base ‘ ( ( IDLsrg ‘ 𝑅 )  ↾s  ( PrmIdeal ‘ 𝑅 ) ) ) ) | 
						
							| 11 |  | rspecval | ⊢ ( 𝑅  ∈  Ring  →  ( Spec ‘ 𝑅 )  =  ( ( IDLsrg ‘ 𝑅 )  ↾s  ( PrmIdeal ‘ 𝑅 ) ) ) | 
						
							| 12 | 1 11 | eqtrid | ⊢ ( 𝑅  ∈  Ring  →  𝑆  =  ( ( IDLsrg ‘ 𝑅 )  ↾s  ( PrmIdeal ‘ 𝑅 ) ) ) | 
						
							| 13 | 12 | fveq2d | ⊢ ( 𝑅  ∈  Ring  →  ( Base ‘ 𝑆 )  =  ( Base ‘ ( ( IDLsrg ‘ 𝑅 )  ↾s  ( PrmIdeal ‘ 𝑅 ) ) ) ) | 
						
							| 14 | 10 13 | eqtr4d | ⊢ ( 𝑅  ∈  Ring  →  ( PrmIdeal ‘ 𝑅 )  =  ( Base ‘ 𝑆 ) ) |