| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rspecbas.1 |  |-  S = ( Spec ` R ) | 
						
							| 2 |  | prmidlssidl |  |-  ( R e. Ring -> ( PrmIdeal ` R ) C_ ( LIdeal ` R ) ) | 
						
							| 3 |  | eqid |  |-  ( IDLsrg ` R ) = ( IDLsrg ` R ) | 
						
							| 4 |  | eqid |  |-  ( LIdeal ` R ) = ( LIdeal ` R ) | 
						
							| 5 | 3 4 | idlsrgbas |  |-  ( R e. Ring -> ( LIdeal ` R ) = ( Base ` ( IDLsrg ` R ) ) ) | 
						
							| 6 | 2 5 | sseqtrd |  |-  ( R e. Ring -> ( PrmIdeal ` R ) C_ ( Base ` ( IDLsrg ` R ) ) ) | 
						
							| 7 |  | eqid |  |-  ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) = ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) | 
						
							| 8 |  | eqid |  |-  ( Base ` ( IDLsrg ` R ) ) = ( Base ` ( IDLsrg ` R ) ) | 
						
							| 9 | 7 8 | ressbas2 |  |-  ( ( PrmIdeal ` R ) C_ ( Base ` ( IDLsrg ` R ) ) -> ( PrmIdeal ` R ) = ( Base ` ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) ) ) | 
						
							| 10 | 6 9 | syl |  |-  ( R e. Ring -> ( PrmIdeal ` R ) = ( Base ` ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) ) ) | 
						
							| 11 |  | rspecval |  |-  ( R e. Ring -> ( Spec ` R ) = ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) ) | 
						
							| 12 | 1 11 | eqtrid |  |-  ( R e. Ring -> S = ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) ) | 
						
							| 13 | 12 | fveq2d |  |-  ( R e. Ring -> ( Base ` S ) = ( Base ` ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) ) ) | 
						
							| 14 | 10 13 | eqtr4d |  |-  ( R e. Ring -> ( PrmIdeal ` R ) = ( Base ` S ) ) |