Step |
Hyp |
Ref |
Expression |
1 |
|
rspecbas.1 |
|- S = ( Spec ` R ) |
2 |
|
prmidlssidl |
|- ( R e. Ring -> ( PrmIdeal ` R ) C_ ( LIdeal ` R ) ) |
3 |
|
eqid |
|- ( IDLsrg ` R ) = ( IDLsrg ` R ) |
4 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
5 |
3 4
|
idlsrgbas |
|- ( R e. Ring -> ( LIdeal ` R ) = ( Base ` ( IDLsrg ` R ) ) ) |
6 |
2 5
|
sseqtrd |
|- ( R e. Ring -> ( PrmIdeal ` R ) C_ ( Base ` ( IDLsrg ` R ) ) ) |
7 |
|
eqid |
|- ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) = ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) |
8 |
|
eqid |
|- ( Base ` ( IDLsrg ` R ) ) = ( Base ` ( IDLsrg ` R ) ) |
9 |
7 8
|
ressbas2 |
|- ( ( PrmIdeal ` R ) C_ ( Base ` ( IDLsrg ` R ) ) -> ( PrmIdeal ` R ) = ( Base ` ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) ) ) |
10 |
6 9
|
syl |
|- ( R e. Ring -> ( PrmIdeal ` R ) = ( Base ` ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) ) ) |
11 |
|
rspecval |
|- ( R e. Ring -> ( Spec ` R ) = ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) ) |
12 |
1 11
|
syl5eq |
|- ( R e. Ring -> S = ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) ) |
13 |
12
|
fveq2d |
|- ( R e. Ring -> ( Base ` S ) = ( Base ` ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) ) ) |
14 |
10 13
|
eqtr4d |
|- ( R e. Ring -> ( PrmIdeal ` R ) = ( Base ` S ) ) |