Step |
Hyp |
Ref |
Expression |
1 |
|
rspecbas.1 |
|- S = ( Spec ` R ) |
2 |
|
rspectset.1 |
|- I = ( LIdeal ` R ) |
3 |
|
rspectset.2 |
|- J = ran ( i e. I |-> { j e. I | -. i C_ j } ) |
4 |
|
fvex |
|- ( PrmIdeal ` R ) e. _V |
5 |
|
eqid |
|- ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) = ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) |
6 |
|
eqid |
|- ( TopSet ` ( IDLsrg ` R ) ) = ( TopSet ` ( IDLsrg ` R ) ) |
7 |
5 6
|
resstset |
|- ( ( PrmIdeal ` R ) e. _V -> ( TopSet ` ( IDLsrg ` R ) ) = ( TopSet ` ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) ) ) |
8 |
4 7
|
ax-mp |
|- ( TopSet ` ( IDLsrg ` R ) ) = ( TopSet ` ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) ) |
9 |
|
eqid |
|- ( IDLsrg ` R ) = ( IDLsrg ` R ) |
10 |
9 2 3
|
idlsrgtset |
|- ( R e. Ring -> J = ( TopSet ` ( IDLsrg ` R ) ) ) |
11 |
|
rspecval |
|- ( R e. Ring -> ( Spec ` R ) = ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) ) |
12 |
1 11
|
eqtrid |
|- ( R e. Ring -> S = ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) ) |
13 |
12
|
fveq2d |
|- ( R e. Ring -> ( TopSet ` S ) = ( TopSet ` ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) ) ) |
14 |
8 10 13
|
3eqtr4a |
|- ( R e. Ring -> J = ( TopSet ` S ) ) |