| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rspecbas.1 |  |-  S = ( Spec ` R ) | 
						
							| 2 |  | rspectset.1 |  |-  I = ( LIdeal ` R ) | 
						
							| 3 |  | rspectset.2 |  |-  J = ran ( i e. I |-> { j e. I | -. i C_ j } ) | 
						
							| 4 |  | fvex |  |-  ( PrmIdeal ` R ) e. _V | 
						
							| 5 |  | eqid |  |-  ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) = ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) | 
						
							| 6 |  | eqid |  |-  ( TopSet ` ( IDLsrg ` R ) ) = ( TopSet ` ( IDLsrg ` R ) ) | 
						
							| 7 | 5 6 | resstset |  |-  ( ( PrmIdeal ` R ) e. _V -> ( TopSet ` ( IDLsrg ` R ) ) = ( TopSet ` ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) ) ) | 
						
							| 8 | 4 7 | ax-mp |  |-  ( TopSet ` ( IDLsrg ` R ) ) = ( TopSet ` ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) ) | 
						
							| 9 |  | eqid |  |-  ( IDLsrg ` R ) = ( IDLsrg ` R ) | 
						
							| 10 | 9 2 3 | idlsrgtset |  |-  ( R e. Ring -> J = ( TopSet ` ( IDLsrg ` R ) ) ) | 
						
							| 11 |  | rspecval |  |-  ( R e. Ring -> ( Spec ` R ) = ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) ) | 
						
							| 12 | 1 11 | eqtrid |  |-  ( R e. Ring -> S = ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) ) | 
						
							| 13 | 12 | fveq2d |  |-  ( R e. Ring -> ( TopSet ` S ) = ( TopSet ` ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) ) ) | 
						
							| 14 | 8 10 13 | 3eqtr4a |  |-  ( R e. Ring -> J = ( TopSet ` S ) ) |