| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idlsrgtset.1 |
|- S = ( IDLsrg ` R ) |
| 2 |
|
idlsrgtset.2 |
|- I = ( LIdeal ` R ) |
| 3 |
|
idlsrgtset.3 |
|- J = ran ( i e. I |-> { j e. I | -. i C_ j } ) |
| 4 |
2
|
fvexi |
|- I e. _V |
| 5 |
4
|
mptex |
|- ( i e. I |-> { j e. I | -. i C_ j } ) e. _V |
| 6 |
5
|
rnex |
|- ran ( i e. I |-> { j e. I | -. i C_ j } ) e. _V |
| 7 |
|
eqid |
|- ( { <. ( Base ` ndx ) , I >. , <. ( +g ` ndx ) , ( LSSum ` R ) >. , <. ( .r ` ndx ) , ( i e. I , j e. I |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } >. } ) = ( { <. ( Base ` ndx ) , I >. , <. ( +g ` ndx ) , ( LSSum ` R ) >. , <. ( .r ` ndx ) , ( i e. I , j e. I |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } >. } ) |
| 8 |
7
|
idlsrgstr |
|- ( { <. ( Base ` ndx ) , I >. , <. ( +g ` ndx ) , ( LSSum ` R ) >. , <. ( .r ` ndx ) , ( i e. I , j e. I |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } >. } ) Struct <. 1 , ; 1 0 >. |
| 9 |
|
tsetid |
|- TopSet = Slot ( TopSet ` ndx ) |
| 10 |
|
snsspr1 |
|- { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. } C_ { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } >. } |
| 11 |
|
ssun2 |
|- { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } >. } C_ ( { <. ( Base ` ndx ) , I >. , <. ( +g ` ndx ) , ( LSSum ` R ) >. , <. ( .r ` ndx ) , ( i e. I , j e. I |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } >. } ) |
| 12 |
10 11
|
sstri |
|- { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. } C_ ( { <. ( Base ` ndx ) , I >. , <. ( +g ` ndx ) , ( LSSum ` R ) >. , <. ( .r ` ndx ) , ( i e. I , j e. I |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } >. } ) |
| 13 |
8 9 12
|
strfv |
|- ( ran ( i e. I |-> { j e. I | -. i C_ j } ) e. _V -> ran ( i e. I |-> { j e. I | -. i C_ j } ) = ( TopSet ` ( { <. ( Base ` ndx ) , I >. , <. ( +g ` ndx ) , ( LSSum ` R ) >. , <. ( .r ` ndx ) , ( i e. I , j e. I |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } >. } ) ) ) |
| 14 |
6 13
|
ax-mp |
|- ran ( i e. I |-> { j e. I | -. i C_ j } ) = ( TopSet ` ( { <. ( Base ` ndx ) , I >. , <. ( +g ` ndx ) , ( LSSum ` R ) >. , <. ( .r ` ndx ) , ( i e. I , j e. I |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } >. } ) ) |
| 15 |
|
eqid |
|- ( LSSum ` R ) = ( LSSum ` R ) |
| 16 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 17 |
|
eqid |
|- ( LSSum ` ( mulGrp ` R ) ) = ( LSSum ` ( mulGrp ` R ) ) |
| 18 |
2 15 16 17
|
idlsrgval |
|- ( R e. V -> ( IDLsrg ` R ) = ( { <. ( Base ` ndx ) , I >. , <. ( +g ` ndx ) , ( LSSum ` R ) >. , <. ( .r ` ndx ) , ( i e. I , j e. I |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } >. } ) ) |
| 19 |
1 18
|
eqtrid |
|- ( R e. V -> S = ( { <. ( Base ` ndx ) , I >. , <. ( +g ` ndx ) , ( LSSum ` R ) >. , <. ( .r ` ndx ) , ( i e. I , j e. I |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } >. } ) ) |
| 20 |
19
|
fveq2d |
|- ( R e. V -> ( TopSet ` S ) = ( TopSet ` ( { <. ( Base ` ndx ) , I >. , <. ( +g ` ndx ) , ( LSSum ` R ) >. , <. ( .r ` ndx ) , ( i e. I , j e. I |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } >. } ) ) ) |
| 21 |
14 20
|
eqtr4id |
|- ( R e. V -> ran ( i e. I |-> { j e. I | -. i C_ j } ) = ( TopSet ` S ) ) |
| 22 |
3 21
|
eqtrid |
|- ( R e. V -> J = ( TopSet ` S ) ) |