Metamath Proof Explorer


Theorem idlsrgtset

Description: Topology component of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypotheses idlsrgtset.1 S = IDLsrg R
idlsrgtset.2 I = LIdeal R
idlsrgtset.3 J = ran i I j I | ¬ i j
Assertion idlsrgtset R V J = TopSet S

Proof

Step Hyp Ref Expression
1 idlsrgtset.1 S = IDLsrg R
2 idlsrgtset.2 I = LIdeal R
3 idlsrgtset.3 J = ran i I j I | ¬ i j
4 2 fvexi I V
5 4 mptex i I j I | ¬ i j V
6 5 rnex ran i I j I | ¬ i j V
7 eqid Base ndx I + ndx LSSum R ndx i I , j I RSpan R i LSSum mulGrp R j TopSet ndx ran i I j I | ¬ i j ndx i j | i j I i j = Base ndx I + ndx LSSum R ndx i I , j I RSpan R i LSSum mulGrp R j TopSet ndx ran i I j I | ¬ i j ndx i j | i j I i j
8 7 idlsrgstr Base ndx I + ndx LSSum R ndx i I , j I RSpan R i LSSum mulGrp R j TopSet ndx ran i I j I | ¬ i j ndx i j | i j I i j Struct 1 10
9 tsetid TopSet = Slot TopSet ndx
10 snsspr1 TopSet ndx ran i I j I | ¬ i j TopSet ndx ran i I j I | ¬ i j ndx i j | i j I i j
11 ssun2 TopSet ndx ran i I j I | ¬ i j ndx i j | i j I i j Base ndx I + ndx LSSum R ndx i I , j I RSpan R i LSSum mulGrp R j TopSet ndx ran i I j I | ¬ i j ndx i j | i j I i j
12 10 11 sstri TopSet ndx ran i I j I | ¬ i j Base ndx I + ndx LSSum R ndx i I , j I RSpan R i LSSum mulGrp R j TopSet ndx ran i I j I | ¬ i j ndx i j | i j I i j
13 8 9 12 strfv ran i I j I | ¬ i j V ran i I j I | ¬ i j = TopSet Base ndx I + ndx LSSum R ndx i I , j I RSpan R i LSSum mulGrp R j TopSet ndx ran i I j I | ¬ i j ndx i j | i j I i j
14 6 13 ax-mp ran i I j I | ¬ i j = TopSet Base ndx I + ndx LSSum R ndx i I , j I RSpan R i LSSum mulGrp R j TopSet ndx ran i I j I | ¬ i j ndx i j | i j I i j
15 eqid LSSum R = LSSum R
16 eqid mulGrp R = mulGrp R
17 eqid LSSum mulGrp R = LSSum mulGrp R
18 2 15 16 17 idlsrgval R V IDLsrg R = Base ndx I + ndx LSSum R ndx i I , j I RSpan R i LSSum mulGrp R j TopSet ndx ran i I j I | ¬ i j ndx i j | i j I i j
19 1 18 eqtrid R V S = Base ndx I + ndx LSSum R ndx i I , j I RSpan R i LSSum mulGrp R j TopSet ndx ran i I j I | ¬ i j ndx i j | i j I i j
20 19 fveq2d R V TopSet S = TopSet Base ndx I + ndx LSSum R ndx i I , j I RSpan R i LSSum mulGrp R j TopSet ndx ran i I j I | ¬ i j ndx i j | i j I i j
21 14 20 eqtr4id R V ran i I j I | ¬ i j = TopSet S
22 3 21 eqtrid R V J = TopSet S