Metamath Proof Explorer


Theorem idlsrgtset

Description: Topology component of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypotheses idlsrgtset.1 No typesetting found for |- S = ( IDLsrg ` R ) with typecode |-
idlsrgtset.2 I = LIdeal R
idlsrgtset.3 J = ran i I j I | ¬ i j
Assertion idlsrgtset R V J = TopSet S

Proof

Step Hyp Ref Expression
1 idlsrgtset.1 Could not format S = ( IDLsrg ` R ) : No typesetting found for |- S = ( IDLsrg ` R ) with typecode |-
2 idlsrgtset.2 I = LIdeal R
3 idlsrgtset.3 J = ran i I j I | ¬ i j
4 2 fvexi I V
5 4 mptex i I j I | ¬ i j V
6 5 rnex ran i I j I | ¬ i j V
7 eqid Base ndx I + ndx LSSum R ndx i I , j I RSpan R i LSSum mulGrp R j TopSet ndx ran i I j I | ¬ i j ndx i j | i j I i j = Base ndx I + ndx LSSum R ndx i I , j I RSpan R i LSSum mulGrp R j TopSet ndx ran i I j I | ¬ i j ndx i j | i j I i j
8 7 idlsrgstr Base ndx I + ndx LSSum R ndx i I , j I RSpan R i LSSum mulGrp R j TopSet ndx ran i I j I | ¬ i j ndx i j | i j I i j Struct 1 10
9 tsetid TopSet = Slot TopSet ndx
10 snsspr1 TopSet ndx ran i I j I | ¬ i j TopSet ndx ran i I j I | ¬ i j ndx i j | i j I i j
11 ssun2 TopSet ndx ran i I j I | ¬ i j ndx i j | i j I i j Base ndx I + ndx LSSum R ndx i I , j I RSpan R i LSSum mulGrp R j TopSet ndx ran i I j I | ¬ i j ndx i j | i j I i j
12 10 11 sstri TopSet ndx ran i I j I | ¬ i j Base ndx I + ndx LSSum R ndx i I , j I RSpan R i LSSum mulGrp R j TopSet ndx ran i I j I | ¬ i j ndx i j | i j I i j
13 8 9 12 strfv ran i I j I | ¬ i j V ran i I j I | ¬ i j = TopSet Base ndx I + ndx LSSum R ndx i I , j I RSpan R i LSSum mulGrp R j TopSet ndx ran i I j I | ¬ i j ndx i j | i j I i j
14 6 13 ax-mp ran i I j I | ¬ i j = TopSet Base ndx I + ndx LSSum R ndx i I , j I RSpan R i LSSum mulGrp R j TopSet ndx ran i I j I | ¬ i j ndx i j | i j I i j
15 eqid LSSum R = LSSum R
16 eqid mulGrp R = mulGrp R
17 eqid LSSum mulGrp R = LSSum mulGrp R
18 2 15 16 17 idlsrgval Could not format ( R e. V -> ( IDLsrg ` R ) = ( { <. ( Base ` ndx ) , I >. , <. ( +g ` ndx ) , ( LSSum ` R ) >. , <. ( .r ` ndx ) , ( i e. I , j e. I |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } >. } ) ) : No typesetting found for |- ( R e. V -> ( IDLsrg ` R ) = ( { <. ( Base ` ndx ) , I >. , <. ( +g ` ndx ) , ( LSSum ` R ) >. , <. ( .r ` ndx ) , ( i e. I , j e. I |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } >. } ) ) with typecode |-
19 1 18 eqtrid R V S = Base ndx I + ndx LSSum R ndx i I , j I RSpan R i LSSum mulGrp R j TopSet ndx ran i I j I | ¬ i j ndx i j | i j I i j
20 19 fveq2d R V TopSet S = TopSet Base ndx I + ndx LSSum R ndx i I , j I RSpan R i LSSum mulGrp R j TopSet ndx ran i I j I | ¬ i j ndx i j | i j I i j
21 14 20 eqtr4id R V ran i I j I | ¬ i j = TopSet S
22 3 21 eqtrid R V J = TopSet S