| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idlsrgval.1 |  | 
						
							| 2 |  | idlsrgval.2 |  | 
						
							| 3 |  | idlsrgval.3 |  | 
						
							| 4 |  | idlsrgval.4 |  | 
						
							| 5 |  | elex |  | 
						
							| 6 |  | fvexd |  | 
						
							| 7 |  | simpr |  | 
						
							| 8 |  | simpl |  | 
						
							| 9 | 8 | fveq2d |  | 
						
							| 10 | 7 9 | eqtrd |  | 
						
							| 11 | 10 1 | eqtr4di |  | 
						
							| 12 | 11 | opeq2d |  | 
						
							| 13 | 8 | fveq2d |  | 
						
							| 14 | 13 2 | eqtr4di |  | 
						
							| 15 | 14 | opeq2d |  | 
						
							| 16 | 8 | fveq2d |  | 
						
							| 17 | 8 | fveq2d |  | 
						
							| 18 | 17 3 | eqtr4di |  | 
						
							| 19 | 18 | fveq2d |  | 
						
							| 20 | 19 4 | eqtr4di |  | 
						
							| 21 | 20 | oveqd |  | 
						
							| 22 | 16 21 | fveq12d |  | 
						
							| 23 | 11 11 22 | mpoeq123dv |  | 
						
							| 24 | 23 | opeq2d |  | 
						
							| 25 | 12 15 24 | tpeq123d |  | 
						
							| 26 | 11 | rabeqdv |  | 
						
							| 27 | 11 26 | mpteq12dv |  | 
						
							| 28 | 27 | rneqd |  | 
						
							| 29 | 28 | opeq2d |  | 
						
							| 30 | 11 | sseq2d |  | 
						
							| 31 | 30 | anbi1d |  | 
						
							| 32 | 31 | opabbidv |  | 
						
							| 33 | 32 | opeq2d |  | 
						
							| 34 | 29 33 | preq12d |  | 
						
							| 35 | 25 34 | uneq12d |  | 
						
							| 36 | 6 35 | csbied |  | 
						
							| 37 |  | df-idlsrg |  | 
						
							| 38 |  | tpex |  | 
						
							| 39 |  | prex |  | 
						
							| 40 | 38 39 | unex |  | 
						
							| 41 | 36 37 40 | fvmpt |  | 
						
							| 42 | 5 41 | syl |  |