Metamath Proof Explorer


Theorem idlsrgval

Description: Lemma for idlsrgbas through idlsrgtset . (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypotheses idlsrgval.1 I=LIdealR
idlsrgval.2 ˙=LSSumR
idlsrgval.3 G=mulGrpR
idlsrgval.4 ˙=LSSumG
Assertion idlsrgval Could not format assertion : No typesetting found for |- ( R e. V -> ( IDLsrg ` R ) = ( { <. ( Base ` ndx ) , I >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , ( i e. I , j e. I |-> ( ( RSpan ` R ) ` ( i .(x) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } >. } ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 idlsrgval.1 I=LIdealR
2 idlsrgval.2 ˙=LSSumR
3 idlsrgval.3 G=mulGrpR
4 idlsrgval.4 ˙=LSSumG
5 elex RVRV
6 fvexd r=RLIdealrV
7 simpr r=Rb=LIdealrb=LIdealr
8 simpl r=Rb=LIdealrr=R
9 8 fveq2d r=Rb=LIdealrLIdealr=LIdealR
10 7 9 eqtrd r=Rb=LIdealrb=LIdealR
11 10 1 eqtr4di r=Rb=LIdealrb=I
12 11 opeq2d r=Rb=LIdealrBasendxb=BasendxI
13 8 fveq2d r=Rb=LIdealrLSSumr=LSSumR
14 13 2 eqtr4di r=Rb=LIdealrLSSumr=˙
15 14 opeq2d r=Rb=LIdealr+ndxLSSumr=+ndx˙
16 8 fveq2d r=Rb=LIdealrRSpanr=RSpanR
17 8 fveq2d r=Rb=LIdealrmulGrpr=mulGrpR
18 17 3 eqtr4di r=Rb=LIdealrmulGrpr=G
19 18 fveq2d r=Rb=LIdealrLSSummulGrpr=LSSumG
20 19 4 eqtr4di r=Rb=LIdealrLSSummulGrpr=˙
21 20 oveqd r=Rb=LIdealriLSSummulGrprj=i˙j
22 16 21 fveq12d r=Rb=LIdealrRSpanriLSSummulGrprj=RSpanRi˙j
23 11 11 22 mpoeq123dv r=Rb=LIdealrib,jbRSpanriLSSummulGrprj=iI,jIRSpanRi˙j
24 23 opeq2d r=Rb=LIdealrndxib,jbRSpanriLSSummulGrprj=ndxiI,jIRSpanRi˙j
25 12 15 24 tpeq123d r=Rb=LIdealrBasendxb+ndxLSSumrndxib,jbRSpanriLSSummulGrprj=BasendxI+ndx˙ndxiI,jIRSpanRi˙j
26 11 rabeqdv r=Rb=LIdealrjb|¬ij=jI|¬ij
27 11 26 mpteq12dv r=Rb=LIdealribjb|¬ij=iIjI|¬ij
28 27 rneqd r=Rb=LIdealrranibjb|¬ij=raniIjI|¬ij
29 28 opeq2d r=Rb=LIdealrTopSetndxranibjb|¬ij=TopSetndxraniIjI|¬ij
30 11 sseq2d r=Rb=LIdealrijbijI
31 30 anbi1d r=Rb=LIdealrijbijijIij
32 31 opabbidv r=Rb=LIdealrij|ijbij=ij|ijIij
33 32 opeq2d r=Rb=LIdealrndxij|ijbij=ndxij|ijIij
34 29 33 preq12d r=Rb=LIdealrTopSetndxranibjb|¬ijndxij|ijbij=TopSetndxraniIjI|¬ijndxij|ijIij
35 25 34 uneq12d r=Rb=LIdealrBasendxb+ndxLSSumrndxib,jbRSpanriLSSummulGrprjTopSetndxranibjb|¬ijndxij|ijbij=BasendxI+ndx˙ndxiI,jIRSpanRi˙jTopSetndxraniIjI|¬ijndxij|ijIij
36 6 35 csbied r=RLIdealr/bBasendxb+ndxLSSumrndxib,jbRSpanriLSSummulGrprjTopSetndxranibjb|¬ijndxij|ijbij=BasendxI+ndx˙ndxiI,jIRSpanRi˙jTopSetndxraniIjI|¬ijndxij|ijIij
37 df-idlsrg Could not format IDLsrg = ( r e. _V |-> [_ ( LIdeal ` r ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( LSSum ` r ) >. , <. ( .r ` ndx ) , ( i e. b , j e. b |-> ( ( RSpan ` r ) ` ( i ( LSSum ` ( mulGrp ` r ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. b |-> { j e. b | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ b /\ i C_ j ) } >. } ) ) : No typesetting found for |- IDLsrg = ( r e. _V |-> [_ ( LIdeal ` r ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( LSSum ` r ) >. , <. ( .r ` ndx ) , ( i e. b , j e. b |-> ( ( RSpan ` r ) ` ( i ( LSSum ` ( mulGrp ` r ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. b |-> { j e. b | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ b /\ i C_ j ) } >. } ) ) with typecode |-
38 tpex BasendxI+ndx˙ndxiI,jIRSpanRi˙jV
39 prex TopSetndxraniIjI|¬ijndxij|ijIijV
40 38 39 unex BasendxI+ndx˙ndxiI,jIRSpanRi˙jTopSetndxraniIjI|¬ijndxij|ijIijV
41 36 37 40 fvmpt Could not format ( R e. _V -> ( IDLsrg ` R ) = ( { <. ( Base ` ndx ) , I >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , ( i e. I , j e. I |-> ( ( RSpan ` R ) ` ( i .(x) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } >. } ) ) : No typesetting found for |- ( R e. _V -> ( IDLsrg ` R ) = ( { <. ( Base ` ndx ) , I >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , ( i e. I , j e. I |-> ( ( RSpan ` R ) ` ( i .(x) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } >. } ) ) with typecode |-
42 5 41 syl Could not format ( R e. V -> ( IDLsrg ` R ) = ( { <. ( Base ` ndx ) , I >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , ( i e. I , j e. I |-> ( ( RSpan ` R ) ` ( i .(x) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } >. } ) ) : No typesetting found for |- ( R e. V -> ( IDLsrg ` R ) = ( { <. ( Base ` ndx ) , I >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , ( i e. I , j e. I |-> ( ( RSpan ` R ) ` ( i .(x) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } >. } ) ) with typecode |-