Step |
Hyp |
Ref |
Expression |
1 |
|
idlsrgval.1 |
⊢ 𝐼 = ( LIdeal ‘ 𝑅 ) |
2 |
|
idlsrgval.2 |
⊢ ⊕ = ( LSSum ‘ 𝑅 ) |
3 |
|
idlsrgval.3 |
⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) |
4 |
|
idlsrgval.4 |
⊢ ⊗ = ( LSSum ‘ 𝐺 ) |
5 |
|
elex |
⊢ ( 𝑅 ∈ 𝑉 → 𝑅 ∈ V ) |
6 |
|
fvexd |
⊢ ( 𝑟 = 𝑅 → ( LIdeal ‘ 𝑟 ) ∈ V ) |
7 |
|
simpr |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( LIdeal ‘ 𝑟 ) ) → 𝑏 = ( LIdeal ‘ 𝑟 ) ) |
8 |
|
simpl |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( LIdeal ‘ 𝑟 ) ) → 𝑟 = 𝑅 ) |
9 |
8
|
fveq2d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( LIdeal ‘ 𝑟 ) ) → ( LIdeal ‘ 𝑟 ) = ( LIdeal ‘ 𝑅 ) ) |
10 |
7 9
|
eqtrd |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( LIdeal ‘ 𝑟 ) ) → 𝑏 = ( LIdeal ‘ 𝑅 ) ) |
11 |
10 1
|
eqtr4di |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( LIdeal ‘ 𝑟 ) ) → 𝑏 = 𝐼 ) |
12 |
11
|
opeq2d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( LIdeal ‘ 𝑟 ) ) → 〈 ( Base ‘ ndx ) , 𝑏 〉 = 〈 ( Base ‘ ndx ) , 𝐼 〉 ) |
13 |
8
|
fveq2d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( LIdeal ‘ 𝑟 ) ) → ( LSSum ‘ 𝑟 ) = ( LSSum ‘ 𝑅 ) ) |
14 |
13 2
|
eqtr4di |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( LIdeal ‘ 𝑟 ) ) → ( LSSum ‘ 𝑟 ) = ⊕ ) |
15 |
14
|
opeq2d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( LIdeal ‘ 𝑟 ) ) → 〈 ( +g ‘ ndx ) , ( LSSum ‘ 𝑟 ) 〉 = 〈 ( +g ‘ ndx ) , ⊕ 〉 ) |
16 |
8
|
fveq2d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( LIdeal ‘ 𝑟 ) ) → ( RSpan ‘ 𝑟 ) = ( RSpan ‘ 𝑅 ) ) |
17 |
8
|
fveq2d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( LIdeal ‘ 𝑟 ) ) → ( mulGrp ‘ 𝑟 ) = ( mulGrp ‘ 𝑅 ) ) |
18 |
17 3
|
eqtr4di |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( LIdeal ‘ 𝑟 ) ) → ( mulGrp ‘ 𝑟 ) = 𝐺 ) |
19 |
18
|
fveq2d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( LIdeal ‘ 𝑟 ) ) → ( LSSum ‘ ( mulGrp ‘ 𝑟 ) ) = ( LSSum ‘ 𝐺 ) ) |
20 |
19 4
|
eqtr4di |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( LIdeal ‘ 𝑟 ) ) → ( LSSum ‘ ( mulGrp ‘ 𝑟 ) ) = ⊗ ) |
21 |
20
|
oveqd |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( LIdeal ‘ 𝑟 ) ) → ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑟 ) ) 𝑗 ) = ( 𝑖 ⊗ 𝑗 ) ) |
22 |
16 21
|
fveq12d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( LIdeal ‘ 𝑟 ) ) → ( ( RSpan ‘ 𝑟 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑟 ) ) 𝑗 ) ) = ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ⊗ 𝑗 ) ) ) |
23 |
11 11 22
|
mpoeq123dv |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( LIdeal ‘ 𝑟 ) ) → ( 𝑖 ∈ 𝑏 , 𝑗 ∈ 𝑏 ↦ ( ( RSpan ‘ 𝑟 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑟 ) ) 𝑗 ) ) ) = ( 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐼 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ⊗ 𝑗 ) ) ) ) |
24 |
23
|
opeq2d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( LIdeal ‘ 𝑟 ) ) → 〈 ( .r ‘ ndx ) , ( 𝑖 ∈ 𝑏 , 𝑗 ∈ 𝑏 ↦ ( ( RSpan ‘ 𝑟 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑟 ) ) 𝑗 ) ) ) 〉 = 〈 ( .r ‘ ndx ) , ( 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐼 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ⊗ 𝑗 ) ) ) 〉 ) |
25 |
12 15 24
|
tpeq123d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( LIdeal ‘ 𝑟 ) ) → { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( LSSum ‘ 𝑟 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑖 ∈ 𝑏 , 𝑗 ∈ 𝑏 ↦ ( ( RSpan ‘ 𝑟 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑟 ) ) 𝑗 ) ) ) 〉 } = { 〈 ( Base ‘ ndx ) , 𝐼 〉 , 〈 ( +g ‘ ndx ) , ⊕ 〉 , 〈 ( .r ‘ ndx ) , ( 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐼 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ⊗ 𝑗 ) ) ) 〉 } ) |
26 |
11
|
rabeqdv |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( LIdeal ‘ 𝑟 ) ) → { 𝑗 ∈ 𝑏 ∣ ¬ 𝑖 ⊆ 𝑗 } = { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) |
27 |
11 26
|
mpteq12dv |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( LIdeal ‘ 𝑟 ) ) → ( 𝑖 ∈ 𝑏 ↦ { 𝑗 ∈ 𝑏 ∣ ¬ 𝑖 ⊆ 𝑗 } ) = ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ) |
28 |
27
|
rneqd |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( LIdeal ‘ 𝑟 ) ) → ran ( 𝑖 ∈ 𝑏 ↦ { 𝑗 ∈ 𝑏 ∣ ¬ 𝑖 ⊆ 𝑗 } ) = ran ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ) |
29 |
28
|
opeq2d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( LIdeal ‘ 𝑟 ) ) → 〈 ( TopSet ‘ ndx ) , ran ( 𝑖 ∈ 𝑏 ↦ { 𝑗 ∈ 𝑏 ∣ ¬ 𝑖 ⊆ 𝑗 } ) 〉 = 〈 ( TopSet ‘ ndx ) , ran ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) 〉 ) |
30 |
11
|
sseq2d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( LIdeal ‘ 𝑟 ) ) → ( { 𝑖 , 𝑗 } ⊆ 𝑏 ↔ { 𝑖 , 𝑗 } ⊆ 𝐼 ) ) |
31 |
30
|
anbi1d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( LIdeal ‘ 𝑟 ) ) → ( ( { 𝑖 , 𝑗 } ⊆ 𝑏 ∧ 𝑖 ⊆ 𝑗 ) ↔ ( { 𝑖 , 𝑗 } ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗 ) ) ) |
32 |
31
|
opabbidv |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( LIdeal ‘ 𝑟 ) ) → { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝑏 ∧ 𝑖 ⊆ 𝑗 ) } = { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗 ) } ) |
33 |
32
|
opeq2d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( LIdeal ‘ 𝑟 ) ) → 〈 ( le ‘ ndx ) , { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝑏 ∧ 𝑖 ⊆ 𝑗 ) } 〉 = 〈 ( le ‘ ndx ) , { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗 ) } 〉 ) |
34 |
29 33
|
preq12d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( LIdeal ‘ 𝑟 ) ) → { 〈 ( TopSet ‘ ndx ) , ran ( 𝑖 ∈ 𝑏 ↦ { 𝑗 ∈ 𝑏 ∣ ¬ 𝑖 ⊆ 𝑗 } ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝑏 ∧ 𝑖 ⊆ 𝑗 ) } 〉 } = { 〈 ( TopSet ‘ ndx ) , ran ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗 ) } 〉 } ) |
35 |
25 34
|
uneq12d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( LIdeal ‘ 𝑟 ) ) → ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( LSSum ‘ 𝑟 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑖 ∈ 𝑏 , 𝑗 ∈ 𝑏 ↦ ( ( RSpan ‘ 𝑟 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑟 ) ) 𝑗 ) ) ) 〉 } ∪ { 〈 ( TopSet ‘ ndx ) , ran ( 𝑖 ∈ 𝑏 ↦ { 𝑗 ∈ 𝑏 ∣ ¬ 𝑖 ⊆ 𝑗 } ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝑏 ∧ 𝑖 ⊆ 𝑗 ) } 〉 } ) = ( { 〈 ( Base ‘ ndx ) , 𝐼 〉 , 〈 ( +g ‘ ndx ) , ⊕ 〉 , 〈 ( .r ‘ ndx ) , ( 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐼 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ⊗ 𝑗 ) ) ) 〉 } ∪ { 〈 ( TopSet ‘ ndx ) , ran ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗 ) } 〉 } ) ) |
36 |
6 35
|
csbied |
⊢ ( 𝑟 = 𝑅 → ⦋ ( LIdeal ‘ 𝑟 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( LSSum ‘ 𝑟 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑖 ∈ 𝑏 , 𝑗 ∈ 𝑏 ↦ ( ( RSpan ‘ 𝑟 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑟 ) ) 𝑗 ) ) ) 〉 } ∪ { 〈 ( TopSet ‘ ndx ) , ran ( 𝑖 ∈ 𝑏 ↦ { 𝑗 ∈ 𝑏 ∣ ¬ 𝑖 ⊆ 𝑗 } ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝑏 ∧ 𝑖 ⊆ 𝑗 ) } 〉 } ) = ( { 〈 ( Base ‘ ndx ) , 𝐼 〉 , 〈 ( +g ‘ ndx ) , ⊕ 〉 , 〈 ( .r ‘ ndx ) , ( 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐼 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ⊗ 𝑗 ) ) ) 〉 } ∪ { 〈 ( TopSet ‘ ndx ) , ran ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗 ) } 〉 } ) ) |
37 |
|
df-idlsrg |
⊢ IDLsrg = ( 𝑟 ∈ V ↦ ⦋ ( LIdeal ‘ 𝑟 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( LSSum ‘ 𝑟 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑖 ∈ 𝑏 , 𝑗 ∈ 𝑏 ↦ ( ( RSpan ‘ 𝑟 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑟 ) ) 𝑗 ) ) ) 〉 } ∪ { 〈 ( TopSet ‘ ndx ) , ran ( 𝑖 ∈ 𝑏 ↦ { 𝑗 ∈ 𝑏 ∣ ¬ 𝑖 ⊆ 𝑗 } ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝑏 ∧ 𝑖 ⊆ 𝑗 ) } 〉 } ) ) |
38 |
|
tpex |
⊢ { 〈 ( Base ‘ ndx ) , 𝐼 〉 , 〈 ( +g ‘ ndx ) , ⊕ 〉 , 〈 ( .r ‘ ndx ) , ( 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐼 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ⊗ 𝑗 ) ) ) 〉 } ∈ V |
39 |
|
prex |
⊢ { 〈 ( TopSet ‘ ndx ) , ran ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗 ) } 〉 } ∈ V |
40 |
38 39
|
unex |
⊢ ( { 〈 ( Base ‘ ndx ) , 𝐼 〉 , 〈 ( +g ‘ ndx ) , ⊕ 〉 , 〈 ( .r ‘ ndx ) , ( 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐼 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ⊗ 𝑗 ) ) ) 〉 } ∪ { 〈 ( TopSet ‘ ndx ) , ran ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗 ) } 〉 } ) ∈ V |
41 |
36 37 40
|
fvmpt |
⊢ ( 𝑅 ∈ V → ( IDLsrg ‘ 𝑅 ) = ( { 〈 ( Base ‘ ndx ) , 𝐼 〉 , 〈 ( +g ‘ ndx ) , ⊕ 〉 , 〈 ( .r ‘ ndx ) , ( 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐼 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ⊗ 𝑗 ) ) ) 〉 } ∪ { 〈 ( TopSet ‘ ndx ) , ran ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗 ) } 〉 } ) ) |
42 |
5 41
|
syl |
⊢ ( 𝑅 ∈ 𝑉 → ( IDLsrg ‘ 𝑅 ) = ( { 〈 ( Base ‘ ndx ) , 𝐼 〉 , 〈 ( +g ‘ ndx ) , ⊕ 〉 , 〈 ( .r ‘ ndx ) , ( 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐼 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ⊗ 𝑗 ) ) ) 〉 } ∪ { 〈 ( TopSet ‘ ndx ) , ran ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗 ) } 〉 } ) ) |