Metamath Proof Explorer


Theorem idlsrgbas

Description: Baae of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypotheses idlsrgbas.1 𝑆 = ( IDLsrg ‘ 𝑅 )
idlsrgbas.2 𝐼 = ( LIdeal ‘ 𝑅 )
Assertion idlsrgbas ( 𝑅𝑉𝐼 = ( Base ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 idlsrgbas.1 𝑆 = ( IDLsrg ‘ 𝑅 )
2 idlsrgbas.2 𝐼 = ( LIdeal ‘ 𝑅 )
3 2 fvexi 𝐼 ∈ V
4 eqid ( { ⟨ ( Base ‘ ndx ) , 𝐼 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐼 , 𝑗𝐼 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐼𝑖𝑗 ) } ⟩ } ) = ( { ⟨ ( Base ‘ ndx ) , 𝐼 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐼 , 𝑗𝐼 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐼𝑖𝑗 ) } ⟩ } )
5 4 idlsrgstr ( { ⟨ ( Base ‘ ndx ) , 𝐼 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐼 , 𝑗𝐼 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐼𝑖𝑗 ) } ⟩ } ) Struct ⟨ 1 , 1 0 ⟩
6 baseid Base = Slot ( Base ‘ ndx )
7 snsstp1 { ⟨ ( Base ‘ ndx ) , 𝐼 ⟩ } ⊆ { ⟨ ( Base ‘ ndx ) , 𝐼 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐼 , 𝑗𝐼 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ }
8 ssun1 { ⟨ ( Base ‘ ndx ) , 𝐼 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐼 , 𝑗𝐼 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , 𝐼 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐼 , 𝑗𝐼 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐼𝑖𝑗 ) } ⟩ } )
9 7 8 sstri { ⟨ ( Base ‘ ndx ) , 𝐼 ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , 𝐼 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐼 , 𝑗𝐼 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐼𝑖𝑗 ) } ⟩ } )
10 5 6 9 strfv ( 𝐼 ∈ V → 𝐼 = ( Base ‘ ( { ⟨ ( Base ‘ ndx ) , 𝐼 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐼 , 𝑗𝐼 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐼𝑖𝑗 ) } ⟩ } ) ) )
11 3 10 ax-mp 𝐼 = ( Base ‘ ( { ⟨ ( Base ‘ ndx ) , 𝐼 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐼 , 𝑗𝐼 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐼𝑖𝑗 ) } ⟩ } ) )
12 eqid ( LSSum ‘ 𝑅 ) = ( LSSum ‘ 𝑅 )
13 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
14 eqid ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) = ( LSSum ‘ ( mulGrp ‘ 𝑅 ) )
15 2 12 13 14 idlsrgval ( 𝑅𝑉 → ( IDLsrg ‘ 𝑅 ) = ( { ⟨ ( Base ‘ ndx ) , 𝐼 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐼 , 𝑗𝐼 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐼𝑖𝑗 ) } ⟩ } ) )
16 1 15 syl5eq ( 𝑅𝑉𝑆 = ( { ⟨ ( Base ‘ ndx ) , 𝐼 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐼 , 𝑗𝐼 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐼𝑖𝑗 ) } ⟩ } ) )
17 16 fveq2d ( 𝑅𝑉 → ( Base ‘ 𝑆 ) = ( Base ‘ ( { ⟨ ( Base ‘ ndx ) , 𝐼 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐼 , 𝑗𝐼 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐼𝑖𝑗 ) } ⟩ } ) ) )
18 11 17 eqtr4id ( 𝑅𝑉𝐼 = ( Base ‘ 𝑆 ) )