Metamath Proof Explorer


Theorem idlsrgstr

Description: A constructed semiring of ideals is a structure. (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypothesis idlsrgstr.1 𝑊 = ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , 𝐽 ⟩ , ⟨ ( le ‘ ndx ) , ⟩ } )
Assertion idlsrgstr 𝑊 Struct ⟨ 1 , 1 0 ⟩

Proof

Step Hyp Ref Expression
1 idlsrgstr.1 𝑊 = ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , 𝐽 ⟩ , ⟨ ( le ‘ ndx ) , ⟩ } )
2 eqid { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ }
3 2 rngstr { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } Struct ⟨ 1 , 3 ⟩
4 9nn 9 ∈ ℕ
5 tsetndx ( TopSet ‘ ndx ) = 9
6 9lt10 9 < 1 0
7 10nn 1 0 ∈ ℕ
8 plendx ( le ‘ ndx ) = 1 0
9 4 5 6 7 8 strle2 { ⟨ ( TopSet ‘ ndx ) , 𝐽 ⟩ , ⟨ ( le ‘ ndx ) , ⟩ } Struct ⟨ 9 , 1 0 ⟩
10 3lt9 3 < 9
11 3 9 10 strleun ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , 𝐽 ⟩ , ⟨ ( le ‘ ndx ) , ⟩ } ) Struct ⟨ 1 , 1 0 ⟩
12 1 11 eqbrtri 𝑊 Struct ⟨ 1 , 1 0 ⟩