Step |
Hyp |
Ref |
Expression |
1 |
|
idlsrgstr.1 |
|- W = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } u. { <. ( TopSet ` ndx ) , J >. , <. ( le ` ndx ) , .<_ >. } ) |
2 |
|
eqid |
|- { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } |
3 |
2
|
rngstr |
|- { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } Struct <. 1 , 3 >. |
4 |
|
9nn |
|- 9 e. NN |
5 |
|
tsetndx |
|- ( TopSet ` ndx ) = 9 |
6 |
|
9lt10 |
|- 9 < ; 1 0 |
7 |
|
10nn |
|- ; 1 0 e. NN |
8 |
|
plendx |
|- ( le ` ndx ) = ; 1 0 |
9 |
4 5 6 7 8
|
strle2 |
|- { <. ( TopSet ` ndx ) , J >. , <. ( le ` ndx ) , .<_ >. } Struct <. 9 , ; 1 0 >. |
10 |
|
3lt9 |
|- 3 < 9 |
11 |
3 9 10
|
strleun |
|- ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } u. { <. ( TopSet ` ndx ) , J >. , <. ( le ` ndx ) , .<_ >. } ) Struct <. 1 , ; 1 0 >. |
12 |
1 11
|
eqbrtri |
|- W Struct <. 1 , ; 1 0 >. |