| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idlsrgval.1 |
|- I = ( LIdeal ` R ) |
| 2 |
|
idlsrgval.2 |
|- .(+) = ( LSSum ` R ) |
| 3 |
|
idlsrgval.3 |
|- G = ( mulGrp ` R ) |
| 4 |
|
idlsrgval.4 |
|- .(x) = ( LSSum ` G ) |
| 5 |
|
elex |
|- ( R e. V -> R e. _V ) |
| 6 |
|
fvexd |
|- ( r = R -> ( LIdeal ` r ) e. _V ) |
| 7 |
|
simpr |
|- ( ( r = R /\ b = ( LIdeal ` r ) ) -> b = ( LIdeal ` r ) ) |
| 8 |
|
simpl |
|- ( ( r = R /\ b = ( LIdeal ` r ) ) -> r = R ) |
| 9 |
8
|
fveq2d |
|- ( ( r = R /\ b = ( LIdeal ` r ) ) -> ( LIdeal ` r ) = ( LIdeal ` R ) ) |
| 10 |
7 9
|
eqtrd |
|- ( ( r = R /\ b = ( LIdeal ` r ) ) -> b = ( LIdeal ` R ) ) |
| 11 |
10 1
|
eqtr4di |
|- ( ( r = R /\ b = ( LIdeal ` r ) ) -> b = I ) |
| 12 |
11
|
opeq2d |
|- ( ( r = R /\ b = ( LIdeal ` r ) ) -> <. ( Base ` ndx ) , b >. = <. ( Base ` ndx ) , I >. ) |
| 13 |
8
|
fveq2d |
|- ( ( r = R /\ b = ( LIdeal ` r ) ) -> ( LSSum ` r ) = ( LSSum ` R ) ) |
| 14 |
13 2
|
eqtr4di |
|- ( ( r = R /\ b = ( LIdeal ` r ) ) -> ( LSSum ` r ) = .(+) ) |
| 15 |
14
|
opeq2d |
|- ( ( r = R /\ b = ( LIdeal ` r ) ) -> <. ( +g ` ndx ) , ( LSSum ` r ) >. = <. ( +g ` ndx ) , .(+) >. ) |
| 16 |
8
|
fveq2d |
|- ( ( r = R /\ b = ( LIdeal ` r ) ) -> ( RSpan ` r ) = ( RSpan ` R ) ) |
| 17 |
8
|
fveq2d |
|- ( ( r = R /\ b = ( LIdeal ` r ) ) -> ( mulGrp ` r ) = ( mulGrp ` R ) ) |
| 18 |
17 3
|
eqtr4di |
|- ( ( r = R /\ b = ( LIdeal ` r ) ) -> ( mulGrp ` r ) = G ) |
| 19 |
18
|
fveq2d |
|- ( ( r = R /\ b = ( LIdeal ` r ) ) -> ( LSSum ` ( mulGrp ` r ) ) = ( LSSum ` G ) ) |
| 20 |
19 4
|
eqtr4di |
|- ( ( r = R /\ b = ( LIdeal ` r ) ) -> ( LSSum ` ( mulGrp ` r ) ) = .(x) ) |
| 21 |
20
|
oveqd |
|- ( ( r = R /\ b = ( LIdeal ` r ) ) -> ( i ( LSSum ` ( mulGrp ` r ) ) j ) = ( i .(x) j ) ) |
| 22 |
16 21
|
fveq12d |
|- ( ( r = R /\ b = ( LIdeal ` r ) ) -> ( ( RSpan ` r ) ` ( i ( LSSum ` ( mulGrp ` r ) ) j ) ) = ( ( RSpan ` R ) ` ( i .(x) j ) ) ) |
| 23 |
11 11 22
|
mpoeq123dv |
|- ( ( r = R /\ b = ( LIdeal ` r ) ) -> ( i e. b , j e. b |-> ( ( RSpan ` r ) ` ( i ( LSSum ` ( mulGrp ` r ) ) j ) ) ) = ( i e. I , j e. I |-> ( ( RSpan ` R ) ` ( i .(x) j ) ) ) ) |
| 24 |
23
|
opeq2d |
|- ( ( r = R /\ b = ( LIdeal ` r ) ) -> <. ( .r ` ndx ) , ( i e. b , j e. b |-> ( ( RSpan ` r ) ` ( i ( LSSum ` ( mulGrp ` r ) ) j ) ) ) >. = <. ( .r ` ndx ) , ( i e. I , j e. I |-> ( ( RSpan ` R ) ` ( i .(x) j ) ) ) >. ) |
| 25 |
12 15 24
|
tpeq123d |
|- ( ( r = R /\ b = ( LIdeal ` r ) ) -> { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( LSSum ` r ) >. , <. ( .r ` ndx ) , ( i e. b , j e. b |-> ( ( RSpan ` r ) ` ( i ( LSSum ` ( mulGrp ` r ) ) j ) ) ) >. } = { <. ( Base ` ndx ) , I >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , ( i e. I , j e. I |-> ( ( RSpan ` R ) ` ( i .(x) j ) ) ) >. } ) |
| 26 |
11
|
rabeqdv |
|- ( ( r = R /\ b = ( LIdeal ` r ) ) -> { j e. b | -. i C_ j } = { j e. I | -. i C_ j } ) |
| 27 |
11 26
|
mpteq12dv |
|- ( ( r = R /\ b = ( LIdeal ` r ) ) -> ( i e. b |-> { j e. b | -. i C_ j } ) = ( i e. I |-> { j e. I | -. i C_ j } ) ) |
| 28 |
27
|
rneqd |
|- ( ( r = R /\ b = ( LIdeal ` r ) ) -> ran ( i e. b |-> { j e. b | -. i C_ j } ) = ran ( i e. I |-> { j e. I | -. i C_ j } ) ) |
| 29 |
28
|
opeq2d |
|- ( ( r = R /\ b = ( LIdeal ` r ) ) -> <. ( TopSet ` ndx ) , ran ( i e. b |-> { j e. b | -. i C_ j } ) >. = <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. ) |
| 30 |
11
|
sseq2d |
|- ( ( r = R /\ b = ( LIdeal ` r ) ) -> ( { i , j } C_ b <-> { i , j } C_ I ) ) |
| 31 |
30
|
anbi1d |
|- ( ( r = R /\ b = ( LIdeal ` r ) ) -> ( ( { i , j } C_ b /\ i C_ j ) <-> ( { i , j } C_ I /\ i C_ j ) ) ) |
| 32 |
31
|
opabbidv |
|- ( ( r = R /\ b = ( LIdeal ` r ) ) -> { <. i , j >. | ( { i , j } C_ b /\ i C_ j ) } = { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } ) |
| 33 |
32
|
opeq2d |
|- ( ( r = R /\ b = ( LIdeal ` r ) ) -> <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ b /\ i C_ j ) } >. = <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } >. ) |
| 34 |
29 33
|
preq12d |
|- ( ( r = R /\ b = ( LIdeal ` r ) ) -> { <. ( TopSet ` ndx ) , ran ( i e. b |-> { j e. b | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ b /\ i C_ j ) } >. } = { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } >. } ) |
| 35 |
25 34
|
uneq12d |
|- ( ( r = R /\ b = ( LIdeal ` r ) ) -> ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( LSSum ` r ) >. , <. ( .r ` ndx ) , ( i e. b , j e. b |-> ( ( RSpan ` r ) ` ( i ( LSSum ` ( mulGrp ` r ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. b |-> { j e. b | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ b /\ i C_ j ) } >. } ) = ( { <. ( Base ` ndx ) , I >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , ( i e. I , j e. I |-> ( ( RSpan ` R ) ` ( i .(x) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } >. } ) ) |
| 36 |
6 35
|
csbied |
|- ( r = R -> [_ ( LIdeal ` r ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( LSSum ` r ) >. , <. ( .r ` ndx ) , ( i e. b , j e. b |-> ( ( RSpan ` r ) ` ( i ( LSSum ` ( mulGrp ` r ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. b |-> { j e. b | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ b /\ i C_ j ) } >. } ) = ( { <. ( Base ` ndx ) , I >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , ( i e. I , j e. I |-> ( ( RSpan ` R ) ` ( i .(x) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } >. } ) ) |
| 37 |
|
df-idlsrg |
|- IDLsrg = ( r e. _V |-> [_ ( LIdeal ` r ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( LSSum ` r ) >. , <. ( .r ` ndx ) , ( i e. b , j e. b |-> ( ( RSpan ` r ) ` ( i ( LSSum ` ( mulGrp ` r ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. b |-> { j e. b | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ b /\ i C_ j ) } >. } ) ) |
| 38 |
|
tpex |
|- { <. ( Base ` ndx ) , I >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , ( i e. I , j e. I |-> ( ( RSpan ` R ) ` ( i .(x) j ) ) ) >. } e. _V |
| 39 |
|
prex |
|- { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } >. } e. _V |
| 40 |
38 39
|
unex |
|- ( { <. ( Base ` ndx ) , I >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , ( i e. I , j e. I |-> ( ( RSpan ` R ) ` ( i .(x) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } >. } ) e. _V |
| 41 |
36 37 40
|
fvmpt |
|- ( R e. _V -> ( IDLsrg ` R ) = ( { <. ( Base ` ndx ) , I >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , ( i e. I , j e. I |-> ( ( RSpan ` R ) ` ( i .(x) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } >. } ) ) |
| 42 |
5 41
|
syl |
|- ( R e. V -> ( IDLsrg ` R ) = ( { <. ( Base ` ndx ) , I >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , ( i e. I , j e. I |-> ( ( RSpan ` R ) ` ( i .(x) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } >. } ) ) |