Step |
Hyp |
Ref |
Expression |
0 |
|
cidlsrg |
|- IDLsrg |
1 |
|
vr |
|- r |
2 |
|
cvv |
|- _V |
3 |
|
clidl |
|- LIdeal |
4 |
1
|
cv |
|- r |
5 |
4 3
|
cfv |
|- ( LIdeal ` r ) |
6 |
|
vb |
|- b |
7 |
|
cbs |
|- Base |
8 |
|
cnx |
|- ndx |
9 |
8 7
|
cfv |
|- ( Base ` ndx ) |
10 |
6
|
cv |
|- b |
11 |
9 10
|
cop |
|- <. ( Base ` ndx ) , b >. |
12 |
|
cplusg |
|- +g |
13 |
8 12
|
cfv |
|- ( +g ` ndx ) |
14 |
|
clsm |
|- LSSum |
15 |
4 14
|
cfv |
|- ( LSSum ` r ) |
16 |
13 15
|
cop |
|- <. ( +g ` ndx ) , ( LSSum ` r ) >. |
17 |
|
cmulr |
|- .r |
18 |
8 17
|
cfv |
|- ( .r ` ndx ) |
19 |
|
vi |
|- i |
20 |
|
vj |
|- j |
21 |
|
crsp |
|- RSpan |
22 |
4 21
|
cfv |
|- ( RSpan ` r ) |
23 |
19
|
cv |
|- i |
24 |
|
cmgp |
|- mulGrp |
25 |
4 24
|
cfv |
|- ( mulGrp ` r ) |
26 |
25 14
|
cfv |
|- ( LSSum ` ( mulGrp ` r ) ) |
27 |
20
|
cv |
|- j |
28 |
23 27 26
|
co |
|- ( i ( LSSum ` ( mulGrp ` r ) ) j ) |
29 |
28 22
|
cfv |
|- ( ( RSpan ` r ) ` ( i ( LSSum ` ( mulGrp ` r ) ) j ) ) |
30 |
19 20 10 10 29
|
cmpo |
|- ( i e. b , j e. b |-> ( ( RSpan ` r ) ` ( i ( LSSum ` ( mulGrp ` r ) ) j ) ) ) |
31 |
18 30
|
cop |
|- <. ( .r ` ndx ) , ( i e. b , j e. b |-> ( ( RSpan ` r ) ` ( i ( LSSum ` ( mulGrp ` r ) ) j ) ) ) >. |
32 |
11 16 31
|
ctp |
|- { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( LSSum ` r ) >. , <. ( .r ` ndx ) , ( i e. b , j e. b |-> ( ( RSpan ` r ) ` ( i ( LSSum ` ( mulGrp ` r ) ) j ) ) ) >. } |
33 |
|
cts |
|- TopSet |
34 |
8 33
|
cfv |
|- ( TopSet ` ndx ) |
35 |
23 27
|
wss |
|- i C_ j |
36 |
35
|
wn |
|- -. i C_ j |
37 |
36 20 10
|
crab |
|- { j e. b | -. i C_ j } |
38 |
19 10 37
|
cmpt |
|- ( i e. b |-> { j e. b | -. i C_ j } ) |
39 |
38
|
crn |
|- ran ( i e. b |-> { j e. b | -. i C_ j } ) |
40 |
34 39
|
cop |
|- <. ( TopSet ` ndx ) , ran ( i e. b |-> { j e. b | -. i C_ j } ) >. |
41 |
|
cple |
|- le |
42 |
8 41
|
cfv |
|- ( le ` ndx ) |
43 |
23 27
|
cpr |
|- { i , j } |
44 |
43 10
|
wss |
|- { i , j } C_ b |
45 |
44 35
|
wa |
|- ( { i , j } C_ b /\ i C_ j ) |
46 |
45 19 20
|
copab |
|- { <. i , j >. | ( { i , j } C_ b /\ i C_ j ) } |
47 |
42 46
|
cop |
|- <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ b /\ i C_ j ) } >. |
48 |
40 47
|
cpr |
|- { <. ( TopSet ` ndx ) , ran ( i e. b |-> { j e. b | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ b /\ i C_ j ) } >. } |
49 |
32 48
|
cun |
|- ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( LSSum ` r ) >. , <. ( .r ` ndx ) , ( i e. b , j e. b |-> ( ( RSpan ` r ) ` ( i ( LSSum ` ( mulGrp ` r ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. b |-> { j e. b | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ b /\ i C_ j ) } >. } ) |
50 |
6 5 49
|
csb |
|- [_ ( LIdeal ` r ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( LSSum ` r ) >. , <. ( .r ` ndx ) , ( i e. b , j e. b |-> ( ( RSpan ` r ) ` ( i ( LSSum ` ( mulGrp ` r ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. b |-> { j e. b | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ b /\ i C_ j ) } >. } ) |
51 |
1 2 50
|
cmpt |
|- ( r e. _V |-> [_ ( LIdeal ` r ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( LSSum ` r ) >. , <. ( .r ` ndx ) , ( i e. b , j e. b |-> ( ( RSpan ` r ) ` ( i ( LSSum ` ( mulGrp ` r ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. b |-> { j e. b | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ b /\ i C_ j ) } >. } ) ) |
52 |
0 51
|
wceq |
|- IDLsrg = ( r e. _V |-> [_ ( LIdeal ` r ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( LSSum ` r ) >. , <. ( .r ` ndx ) , ( i e. b , j e. b |-> ( ( RSpan ` r ) ` ( i ( LSSum ` ( mulGrp ` r ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. b |-> { j e. b | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ b /\ i C_ j ) } >. } ) ) |