| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cidlsrg |  |-  IDLsrg | 
						
							| 1 |  | vr |  |-  r | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | clidl |  |-  LIdeal | 
						
							| 4 | 1 | cv |  |-  r | 
						
							| 5 | 4 3 | cfv |  |-  ( LIdeal ` r ) | 
						
							| 6 |  | vb |  |-  b | 
						
							| 7 |  | cbs |  |-  Base | 
						
							| 8 |  | cnx |  |-  ndx | 
						
							| 9 | 8 7 | cfv |  |-  ( Base ` ndx ) | 
						
							| 10 | 6 | cv |  |-  b | 
						
							| 11 | 9 10 | cop |  |-  <. ( Base ` ndx ) , b >. | 
						
							| 12 |  | cplusg |  |-  +g | 
						
							| 13 | 8 12 | cfv |  |-  ( +g ` ndx ) | 
						
							| 14 |  | clsm |  |-  LSSum | 
						
							| 15 | 4 14 | cfv |  |-  ( LSSum ` r ) | 
						
							| 16 | 13 15 | cop |  |-  <. ( +g ` ndx ) , ( LSSum ` r ) >. | 
						
							| 17 |  | cmulr |  |-  .r | 
						
							| 18 | 8 17 | cfv |  |-  ( .r ` ndx ) | 
						
							| 19 |  | vi |  |-  i | 
						
							| 20 |  | vj |  |-  j | 
						
							| 21 |  | crsp |  |-  RSpan | 
						
							| 22 | 4 21 | cfv |  |-  ( RSpan ` r ) | 
						
							| 23 | 19 | cv |  |-  i | 
						
							| 24 |  | cmgp |  |-  mulGrp | 
						
							| 25 | 4 24 | cfv |  |-  ( mulGrp ` r ) | 
						
							| 26 | 25 14 | cfv |  |-  ( LSSum ` ( mulGrp ` r ) ) | 
						
							| 27 | 20 | cv |  |-  j | 
						
							| 28 | 23 27 26 | co |  |-  ( i ( LSSum ` ( mulGrp ` r ) ) j ) | 
						
							| 29 | 28 22 | cfv |  |-  ( ( RSpan ` r ) ` ( i ( LSSum ` ( mulGrp ` r ) ) j ) ) | 
						
							| 30 | 19 20 10 10 29 | cmpo |  |-  ( i e. b , j e. b |-> ( ( RSpan ` r ) ` ( i ( LSSum ` ( mulGrp ` r ) ) j ) ) ) | 
						
							| 31 | 18 30 | cop |  |-  <. ( .r ` ndx ) , ( i e. b , j e. b |-> ( ( RSpan ` r ) ` ( i ( LSSum ` ( mulGrp ` r ) ) j ) ) ) >. | 
						
							| 32 | 11 16 31 | ctp |  |-  { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( LSSum ` r ) >. , <. ( .r ` ndx ) , ( i e. b , j e. b |-> ( ( RSpan ` r ) ` ( i ( LSSum ` ( mulGrp ` r ) ) j ) ) ) >. } | 
						
							| 33 |  | cts |  |-  TopSet | 
						
							| 34 | 8 33 | cfv |  |-  ( TopSet ` ndx ) | 
						
							| 35 | 23 27 | wss |  |-  i C_ j | 
						
							| 36 | 35 | wn |  |-  -. i C_ j | 
						
							| 37 | 36 20 10 | crab |  |-  { j e. b | -. i C_ j } | 
						
							| 38 | 19 10 37 | cmpt |  |-  ( i e. b |-> { j e. b | -. i C_ j } ) | 
						
							| 39 | 38 | crn |  |-  ran ( i e. b |-> { j e. b | -. i C_ j } ) | 
						
							| 40 | 34 39 | cop |  |-  <. ( TopSet ` ndx ) , ran ( i e. b |-> { j e. b | -. i C_ j } ) >. | 
						
							| 41 |  | cple |  |-  le | 
						
							| 42 | 8 41 | cfv |  |-  ( le ` ndx ) | 
						
							| 43 | 23 27 | cpr |  |-  { i , j } | 
						
							| 44 | 43 10 | wss |  |-  { i , j } C_ b | 
						
							| 45 | 44 35 | wa |  |-  ( { i , j } C_ b /\ i C_ j ) | 
						
							| 46 | 45 19 20 | copab |  |-  { <. i , j >. | ( { i , j } C_ b /\ i C_ j ) } | 
						
							| 47 | 42 46 | cop |  |-  <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ b /\ i C_ j ) } >. | 
						
							| 48 | 40 47 | cpr |  |-  { <. ( TopSet ` ndx ) , ran ( i e. b |-> { j e. b | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ b /\ i C_ j ) } >. } | 
						
							| 49 | 32 48 | cun |  |-  ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( LSSum ` r ) >. , <. ( .r ` ndx ) , ( i e. b , j e. b |-> ( ( RSpan ` r ) ` ( i ( LSSum ` ( mulGrp ` r ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. b |-> { j e. b | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ b /\ i C_ j ) } >. } ) | 
						
							| 50 | 6 5 49 | csb |  |-  [_ ( LIdeal ` r ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( LSSum ` r ) >. , <. ( .r ` ndx ) , ( i e. b , j e. b |-> ( ( RSpan ` r ) ` ( i ( LSSum ` ( mulGrp ` r ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. b |-> { j e. b | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ b /\ i C_ j ) } >. } ) | 
						
							| 51 | 1 2 50 | cmpt |  |-  ( r e. _V |-> [_ ( LIdeal ` r ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( LSSum ` r ) >. , <. ( .r ` ndx ) , ( i e. b , j e. b |-> ( ( RSpan ` r ) ` ( i ( LSSum ` ( mulGrp ` r ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. b |-> { j e. b | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ b /\ i C_ j ) } >. } ) ) | 
						
							| 52 | 0 51 | wceq |  |-  IDLsrg = ( r e. _V |-> [_ ( LIdeal ` r ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( LSSum ` r ) >. , <. ( .r ` ndx ) , ( i e. b , j e. b |-> ( ( RSpan ` r ) ` ( i ( LSSum ` ( mulGrp ` r ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. b |-> { j e. b | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ b /\ i C_ j ) } >. } ) ) |