Metamath Proof Explorer


Definition df-idlsrg

Description: Define a structure for the ideals of a ring. (Contributed by Thierry Arnoux, 21-Jan-2024)

Ref Expression
Assertion df-idlsrg IDLsrg = ( 𝑟 ∈ V ↦ ( LIdeal ‘ 𝑟 ) / 𝑏 ( { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑟 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝑏 , 𝑗𝑏 ↦ ( ( RSpan ‘ 𝑟 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑟 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝑏 ↦ { 𝑗𝑏 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝑏𝑖𝑗 ) } ⟩ } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cidlsrg IDLsrg
1 vr 𝑟
2 cvv V
3 clidl LIdeal
4 1 cv 𝑟
5 4 3 cfv ( LIdeal ‘ 𝑟 )
6 vb 𝑏
7 cbs Base
8 cnx ndx
9 8 7 cfv ( Base ‘ ndx )
10 6 cv 𝑏
11 9 10 cop ⟨ ( Base ‘ ndx ) , 𝑏
12 cplusg +g
13 8 12 cfv ( +g ‘ ndx )
14 clsm LSSum
15 4 14 cfv ( LSSum ‘ 𝑟 )
16 13 15 cop ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑟 ) ⟩
17 cmulr .r
18 8 17 cfv ( .r ‘ ndx )
19 vi 𝑖
20 vj 𝑗
21 crsp RSpan
22 4 21 cfv ( RSpan ‘ 𝑟 )
23 19 cv 𝑖
24 cmgp mulGrp
25 4 24 cfv ( mulGrp ‘ 𝑟 )
26 25 14 cfv ( LSSum ‘ ( mulGrp ‘ 𝑟 ) )
27 20 cv 𝑗
28 23 27 26 co ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑟 ) ) 𝑗 )
29 28 22 cfv ( ( RSpan ‘ 𝑟 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑟 ) ) 𝑗 ) )
30 19 20 10 10 29 cmpo ( 𝑖𝑏 , 𝑗𝑏 ↦ ( ( RSpan ‘ 𝑟 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑟 ) ) 𝑗 ) ) )
31 18 30 cop ⟨ ( .r ‘ ndx ) , ( 𝑖𝑏 , 𝑗𝑏 ↦ ( ( RSpan ‘ 𝑟 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑟 ) ) 𝑗 ) ) ) ⟩
32 11 16 31 ctp { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑟 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝑏 , 𝑗𝑏 ↦ ( ( RSpan ‘ 𝑟 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑟 ) ) 𝑗 ) ) ) ⟩ }
33 cts TopSet
34 8 33 cfv ( TopSet ‘ ndx )
35 23 27 wss 𝑖𝑗
36 35 wn ¬ 𝑖𝑗
37 36 20 10 crab { 𝑗𝑏 ∣ ¬ 𝑖𝑗 }
38 19 10 37 cmpt ( 𝑖𝑏 ↦ { 𝑗𝑏 ∣ ¬ 𝑖𝑗 } )
39 38 crn ran ( 𝑖𝑏 ↦ { 𝑗𝑏 ∣ ¬ 𝑖𝑗 } )
40 34 39 cop ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝑏 ↦ { 𝑗𝑏 ∣ ¬ 𝑖𝑗 } ) ⟩
41 cple le
42 8 41 cfv ( le ‘ ndx )
43 23 27 cpr { 𝑖 , 𝑗 }
44 43 10 wss { 𝑖 , 𝑗 } ⊆ 𝑏
45 44 35 wa ( { 𝑖 , 𝑗 } ⊆ 𝑏𝑖𝑗 )
46 45 19 20 copab { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝑏𝑖𝑗 ) }
47 42 46 cop ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝑏𝑖𝑗 ) } ⟩
48 40 47 cpr { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝑏 ↦ { 𝑗𝑏 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝑏𝑖𝑗 ) } ⟩ }
49 32 48 cun ( { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑟 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝑏 , 𝑗𝑏 ↦ ( ( RSpan ‘ 𝑟 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑟 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝑏 ↦ { 𝑗𝑏 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝑏𝑖𝑗 ) } ⟩ } )
50 6 5 49 csb ( LIdeal ‘ 𝑟 ) / 𝑏 ( { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑟 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝑏 , 𝑗𝑏 ↦ ( ( RSpan ‘ 𝑟 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑟 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝑏 ↦ { 𝑗𝑏 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝑏𝑖𝑗 ) } ⟩ } )
51 1 2 50 cmpt ( 𝑟 ∈ V ↦ ( LIdeal ‘ 𝑟 ) / 𝑏 ( { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑟 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝑏 , 𝑗𝑏 ↦ ( ( RSpan ‘ 𝑟 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑟 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝑏 ↦ { 𝑗𝑏 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝑏𝑖𝑗 ) } ⟩ } ) )
52 0 51 wceq IDLsrg = ( 𝑟 ∈ V ↦ ( LIdeal ‘ 𝑟 ) / 𝑏 ( { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑟 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝑏 , 𝑗𝑏 ↦ ( ( RSpan ‘ 𝑟 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑟 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝑏 ↦ { 𝑗𝑏 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝑏𝑖𝑗 ) } ⟩ } ) )