Metamath Proof Explorer


Theorem idlsrgplusg

Description: Additive operation of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypotheses idlsrgplusg.1 𝑆 = ( IDLsrg ‘ 𝑅 )
idlsrgplusg.2 = ( LSSum ‘ 𝑅 )
Assertion idlsrgplusg ( 𝑅𝑉 = ( +g𝑆 ) )

Proof

Step Hyp Ref Expression
1 idlsrgplusg.1 𝑆 = ( IDLsrg ‘ 𝑅 )
2 idlsrgplusg.2 = ( LSSum ‘ 𝑅 )
3 2 fvexi ∈ V
4 eqid ( { ⟨ ( Base ‘ ndx ) , ( LIdeal ‘ 𝑅 ) ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) , 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑖𝑗 ) } ⟩ } ) = ( { ⟨ ( Base ‘ ndx ) , ( LIdeal ‘ 𝑅 ) ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) , 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑖𝑗 ) } ⟩ } )
5 4 idlsrgstr ( { ⟨ ( Base ‘ ndx ) , ( LIdeal ‘ 𝑅 ) ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) , 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑖𝑗 ) } ⟩ } ) Struct ⟨ 1 , 1 0 ⟩
6 plusgid +g = Slot ( +g ‘ ndx )
7 snsstp2 { ⟨ ( +g ‘ ndx ) , ⟩ } ⊆ { ⟨ ( Base ‘ ndx ) , ( LIdeal ‘ 𝑅 ) ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) , 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ }
8 ssun1 { ⟨ ( Base ‘ ndx ) , ( LIdeal ‘ 𝑅 ) ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) , 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , ( LIdeal ‘ 𝑅 ) ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) , 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑖𝑗 ) } ⟩ } )
9 7 8 sstri { ⟨ ( +g ‘ ndx ) , ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , ( LIdeal ‘ 𝑅 ) ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) , 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑖𝑗 ) } ⟩ } )
10 5 6 9 strfv ( ∈ V → = ( +g ‘ ( { ⟨ ( Base ‘ ndx ) , ( LIdeal ‘ 𝑅 ) ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) , 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑖𝑗 ) } ⟩ } ) ) )
11 3 10 ax-mp = ( +g ‘ ( { ⟨ ( Base ‘ ndx ) , ( LIdeal ‘ 𝑅 ) ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) , 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑖𝑗 ) } ⟩ } ) )
12 eqid ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 )
13 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
14 eqid ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) = ( LSSum ‘ ( mulGrp ‘ 𝑅 ) )
15 12 2 13 14 idlsrgval ( 𝑅𝑉 → ( IDLsrg ‘ 𝑅 ) = ( { ⟨ ( Base ‘ ndx ) , ( LIdeal ‘ 𝑅 ) ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) , 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑖𝑗 ) } ⟩ } ) )
16 1 15 syl5eq ( 𝑅𝑉𝑆 = ( { ⟨ ( Base ‘ ndx ) , ( LIdeal ‘ 𝑅 ) ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) , 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑖𝑗 ) } ⟩ } ) )
17 16 fveq2d ( 𝑅𝑉 → ( +g𝑆 ) = ( +g ‘ ( { ⟨ ( Base ‘ ndx ) , ( LIdeal ‘ 𝑅 ) ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) , 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ ( LIdeal ‘ 𝑅 ) ∧ 𝑖𝑗 ) } ⟩ } ) ) )
18 11 17 eqtr4id ( 𝑅𝑉 = ( +g𝑆 ) )