Step |
Hyp |
Ref |
Expression |
1 |
|
idlsrgplusg.1 |
|- S = ( IDLsrg ` R ) |
2 |
|
idlsrgplusg.2 |
|- .(+) = ( LSSum ` R ) |
3 |
2
|
fvexi |
|- .(+) e. _V |
4 |
|
eqid |
|- ( { <. ( Base ` ndx ) , ( LIdeal ` R ) >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , ( i e. ( LIdeal ` R ) , j e. ( LIdeal ` R ) |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. ( LIdeal ` R ) |-> { j e. ( LIdeal ` R ) | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ ( LIdeal ` R ) /\ i C_ j ) } >. } ) = ( { <. ( Base ` ndx ) , ( LIdeal ` R ) >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , ( i e. ( LIdeal ` R ) , j e. ( LIdeal ` R ) |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. ( LIdeal ` R ) |-> { j e. ( LIdeal ` R ) | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ ( LIdeal ` R ) /\ i C_ j ) } >. } ) |
5 |
4
|
idlsrgstr |
|- ( { <. ( Base ` ndx ) , ( LIdeal ` R ) >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , ( i e. ( LIdeal ` R ) , j e. ( LIdeal ` R ) |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. ( LIdeal ` R ) |-> { j e. ( LIdeal ` R ) | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ ( LIdeal ` R ) /\ i C_ j ) } >. } ) Struct <. 1 , ; 1 0 >. |
6 |
|
plusgid |
|- +g = Slot ( +g ` ndx ) |
7 |
|
snsstp2 |
|- { <. ( +g ` ndx ) , .(+) >. } C_ { <. ( Base ` ndx ) , ( LIdeal ` R ) >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , ( i e. ( LIdeal ` R ) , j e. ( LIdeal ` R ) |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } |
8 |
|
ssun1 |
|- { <. ( Base ` ndx ) , ( LIdeal ` R ) >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , ( i e. ( LIdeal ` R ) , j e. ( LIdeal ` R ) |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } C_ ( { <. ( Base ` ndx ) , ( LIdeal ` R ) >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , ( i e. ( LIdeal ` R ) , j e. ( LIdeal ` R ) |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. ( LIdeal ` R ) |-> { j e. ( LIdeal ` R ) | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ ( LIdeal ` R ) /\ i C_ j ) } >. } ) |
9 |
7 8
|
sstri |
|- { <. ( +g ` ndx ) , .(+) >. } C_ ( { <. ( Base ` ndx ) , ( LIdeal ` R ) >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , ( i e. ( LIdeal ` R ) , j e. ( LIdeal ` R ) |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. ( LIdeal ` R ) |-> { j e. ( LIdeal ` R ) | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ ( LIdeal ` R ) /\ i C_ j ) } >. } ) |
10 |
5 6 9
|
strfv |
|- ( .(+) e. _V -> .(+) = ( +g ` ( { <. ( Base ` ndx ) , ( LIdeal ` R ) >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , ( i e. ( LIdeal ` R ) , j e. ( LIdeal ` R ) |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. ( LIdeal ` R ) |-> { j e. ( LIdeal ` R ) | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ ( LIdeal ` R ) /\ i C_ j ) } >. } ) ) ) |
11 |
3 10
|
ax-mp |
|- .(+) = ( +g ` ( { <. ( Base ` ndx ) , ( LIdeal ` R ) >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , ( i e. ( LIdeal ` R ) , j e. ( LIdeal ` R ) |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. ( LIdeal ` R ) |-> { j e. ( LIdeal ` R ) | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ ( LIdeal ` R ) /\ i C_ j ) } >. } ) ) |
12 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
13 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
14 |
|
eqid |
|- ( LSSum ` ( mulGrp ` R ) ) = ( LSSum ` ( mulGrp ` R ) ) |
15 |
12 2 13 14
|
idlsrgval |
|- ( R e. V -> ( IDLsrg ` R ) = ( { <. ( Base ` ndx ) , ( LIdeal ` R ) >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , ( i e. ( LIdeal ` R ) , j e. ( LIdeal ` R ) |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. ( LIdeal ` R ) |-> { j e. ( LIdeal ` R ) | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ ( LIdeal ` R ) /\ i C_ j ) } >. } ) ) |
16 |
1 15
|
syl5eq |
|- ( R e. V -> S = ( { <. ( Base ` ndx ) , ( LIdeal ` R ) >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , ( i e. ( LIdeal ` R ) , j e. ( LIdeal ` R ) |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. ( LIdeal ` R ) |-> { j e. ( LIdeal ` R ) | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ ( LIdeal ` R ) /\ i C_ j ) } >. } ) ) |
17 |
16
|
fveq2d |
|- ( R e. V -> ( +g ` S ) = ( +g ` ( { <. ( Base ` ndx ) , ( LIdeal ` R ) >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , ( i e. ( LIdeal ` R ) , j e. ( LIdeal ` R ) |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. ( LIdeal ` R ) |-> { j e. ( LIdeal ` R ) | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ ( LIdeal ` R ) /\ i C_ j ) } >. } ) ) ) |
18 |
11 17
|
eqtr4id |
|- ( R e. V -> .(+) = ( +g ` S ) ) |