Metamath Proof Explorer


Theorem idlsrgplusg

Description: Additive operation of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypotheses idlsrgplusg.1 No typesetting found for |- S = ( IDLsrg ` R ) with typecode |-
idlsrgplusg.2 ˙=LSSumR
Assertion idlsrgplusg RV˙=+S

Proof

Step Hyp Ref Expression
1 idlsrgplusg.1 Could not format S = ( IDLsrg ` R ) : No typesetting found for |- S = ( IDLsrg ` R ) with typecode |-
2 idlsrgplusg.2 ˙=LSSumR
3 2 fvexi ˙V
4 eqid BasendxLIdealR+ndx˙ndxiLIdealR,jLIdealRRSpanRiLSSummulGrpRjTopSetndxraniLIdealRjLIdealR|¬ijndxij|ijLIdealRij=BasendxLIdealR+ndx˙ndxiLIdealR,jLIdealRRSpanRiLSSummulGrpRjTopSetndxraniLIdealRjLIdealR|¬ijndxij|ijLIdealRij
5 4 idlsrgstr BasendxLIdealR+ndx˙ndxiLIdealR,jLIdealRRSpanRiLSSummulGrpRjTopSetndxraniLIdealRjLIdealR|¬ijndxij|ijLIdealRijStruct110
6 plusgid +𝑔=Slot+ndx
7 snsstp2 +ndx˙BasendxLIdealR+ndx˙ndxiLIdealR,jLIdealRRSpanRiLSSummulGrpRj
8 ssun1 BasendxLIdealR+ndx˙ndxiLIdealR,jLIdealRRSpanRiLSSummulGrpRjBasendxLIdealR+ndx˙ndxiLIdealR,jLIdealRRSpanRiLSSummulGrpRjTopSetndxraniLIdealRjLIdealR|¬ijndxij|ijLIdealRij
9 7 8 sstri +ndx˙BasendxLIdealR+ndx˙ndxiLIdealR,jLIdealRRSpanRiLSSummulGrpRjTopSetndxraniLIdealRjLIdealR|¬ijndxij|ijLIdealRij
10 5 6 9 strfv ˙V˙=+BasendxLIdealR+ndx˙ndxiLIdealR,jLIdealRRSpanRiLSSummulGrpRjTopSetndxraniLIdealRjLIdealR|¬ijndxij|ijLIdealRij
11 3 10 ax-mp ˙=+BasendxLIdealR+ndx˙ndxiLIdealR,jLIdealRRSpanRiLSSummulGrpRjTopSetndxraniLIdealRjLIdealR|¬ijndxij|ijLIdealRij
12 eqid LIdealR=LIdealR
13 eqid mulGrpR=mulGrpR
14 eqid LSSummulGrpR=LSSummulGrpR
15 12 2 13 14 idlsrgval Could not format ( R e. V -> ( IDLsrg ` R ) = ( { <. ( Base ` ndx ) , ( LIdeal ` R ) >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , ( i e. ( LIdeal ` R ) , j e. ( LIdeal ` R ) |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. ( LIdeal ` R ) |-> { j e. ( LIdeal ` R ) | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ ( LIdeal ` R ) /\ i C_ j ) } >. } ) ) : No typesetting found for |- ( R e. V -> ( IDLsrg ` R ) = ( { <. ( Base ` ndx ) , ( LIdeal ` R ) >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , ( i e. ( LIdeal ` R ) , j e. ( LIdeal ` R ) |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. ( LIdeal ` R ) |-> { j e. ( LIdeal ` R ) | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ ( LIdeal ` R ) /\ i C_ j ) } >. } ) ) with typecode |-
16 1 15 eqtrid RVS=BasendxLIdealR+ndx˙ndxiLIdealR,jLIdealRRSpanRiLSSummulGrpRjTopSetndxraniLIdealRjLIdealR|¬ijndxij|ijLIdealRij
17 16 fveq2d RV+S=+BasendxLIdealR+ndx˙ndxiLIdealR,jLIdealRRSpanRiLSSummulGrpRjTopSetndxraniLIdealRjLIdealR|¬ijndxij|ijLIdealRij
18 11 17 eqtr4id RV˙=+S