Metamath Proof Explorer


Theorem idlsrgplusg

Description: Additive operation of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypotheses idlsrgplusg.1 S = IDLsrg R
idlsrgplusg.2 ˙ = LSSum R
Assertion idlsrgplusg R V ˙ = + S

Proof

Step Hyp Ref Expression
1 idlsrgplusg.1 S = IDLsrg R
2 idlsrgplusg.2 ˙ = LSSum R
3 2 fvexi ˙ V
4 eqid Base ndx LIdeal R + ndx ˙ ndx i LIdeal R , j LIdeal R RSpan R i LSSum mulGrp R j TopSet ndx ran i LIdeal R j LIdeal R | ¬ i j ndx i j | i j LIdeal R i j = Base ndx LIdeal R + ndx ˙ ndx i LIdeal R , j LIdeal R RSpan R i LSSum mulGrp R j TopSet ndx ran i LIdeal R j LIdeal R | ¬ i j ndx i j | i j LIdeal R i j
5 4 idlsrgstr Base ndx LIdeal R + ndx ˙ ndx i LIdeal R , j LIdeal R RSpan R i LSSum mulGrp R j TopSet ndx ran i LIdeal R j LIdeal R | ¬ i j ndx i j | i j LIdeal R i j Struct 1 10
6 plusgid + 𝑔 = Slot + ndx
7 snsstp2 + ndx ˙ Base ndx LIdeal R + ndx ˙ ndx i LIdeal R , j LIdeal R RSpan R i LSSum mulGrp R j
8 ssun1 Base ndx LIdeal R + ndx ˙ ndx i LIdeal R , j LIdeal R RSpan R i LSSum mulGrp R j Base ndx LIdeal R + ndx ˙ ndx i LIdeal R , j LIdeal R RSpan R i LSSum mulGrp R j TopSet ndx ran i LIdeal R j LIdeal R | ¬ i j ndx i j | i j LIdeal R i j
9 7 8 sstri + ndx ˙ Base ndx LIdeal R + ndx ˙ ndx i LIdeal R , j LIdeal R RSpan R i LSSum mulGrp R j TopSet ndx ran i LIdeal R j LIdeal R | ¬ i j ndx i j | i j LIdeal R i j
10 5 6 9 strfv ˙ V ˙ = + Base ndx LIdeal R + ndx ˙ ndx i LIdeal R , j LIdeal R RSpan R i LSSum mulGrp R j TopSet ndx ran i LIdeal R j LIdeal R | ¬ i j ndx i j | i j LIdeal R i j
11 3 10 ax-mp ˙ = + Base ndx LIdeal R + ndx ˙ ndx i LIdeal R , j LIdeal R RSpan R i LSSum mulGrp R j TopSet ndx ran i LIdeal R j LIdeal R | ¬ i j ndx i j | i j LIdeal R i j
12 eqid LIdeal R = LIdeal R
13 eqid mulGrp R = mulGrp R
14 eqid LSSum mulGrp R = LSSum mulGrp R
15 12 2 13 14 idlsrgval R V IDLsrg R = Base ndx LIdeal R + ndx ˙ ndx i LIdeal R , j LIdeal R RSpan R i LSSum mulGrp R j TopSet ndx ran i LIdeal R j LIdeal R | ¬ i j ndx i j | i j LIdeal R i j
16 1 15 eqtrid R V S = Base ndx LIdeal R + ndx ˙ ndx i LIdeal R , j LIdeal R RSpan R i LSSum mulGrp R j TopSet ndx ran i LIdeal R j LIdeal R | ¬ i j ndx i j | i j LIdeal R i j
17 16 fveq2d R V + S = + Base ndx LIdeal R + ndx ˙ ndx i LIdeal R , j LIdeal R RSpan R i LSSum mulGrp R j TopSet ndx ran i LIdeal R j LIdeal R | ¬ i j ndx i j | i j LIdeal R i j
18 11 17 eqtr4id R V ˙ = + S