Metamath Proof Explorer


Theorem idlsrgplusg

Description: Additive operation of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypotheses idlsrgplusg.1 No typesetting found for |- S = ( IDLsrg ` R ) with typecode |-
idlsrgplusg.2 ˙ = LSSum R
Assertion idlsrgplusg R V ˙ = + S

Proof

Step Hyp Ref Expression
1 idlsrgplusg.1 Could not format S = ( IDLsrg ` R ) : No typesetting found for |- S = ( IDLsrg ` R ) with typecode |-
2 idlsrgplusg.2 ˙ = LSSum R
3 2 fvexi ˙ V
4 eqid Base ndx LIdeal R + ndx ˙ ndx i LIdeal R , j LIdeal R RSpan R i LSSum mulGrp R j TopSet ndx ran i LIdeal R j LIdeal R | ¬ i j ndx i j | i j LIdeal R i j = Base ndx LIdeal R + ndx ˙ ndx i LIdeal R , j LIdeal R RSpan R i LSSum mulGrp R j TopSet ndx ran i LIdeal R j LIdeal R | ¬ i j ndx i j | i j LIdeal R i j
5 4 idlsrgstr Base ndx LIdeal R + ndx ˙ ndx i LIdeal R , j LIdeal R RSpan R i LSSum mulGrp R j TopSet ndx ran i LIdeal R j LIdeal R | ¬ i j ndx i j | i j LIdeal R i j Struct 1 10
6 plusgid + 𝑔 = Slot + ndx
7 snsstp2 + ndx ˙ Base ndx LIdeal R + ndx ˙ ndx i LIdeal R , j LIdeal R RSpan R i LSSum mulGrp R j
8 ssun1 Base ndx LIdeal R + ndx ˙ ndx i LIdeal R , j LIdeal R RSpan R i LSSum mulGrp R j Base ndx LIdeal R + ndx ˙ ndx i LIdeal R , j LIdeal R RSpan R i LSSum mulGrp R j TopSet ndx ran i LIdeal R j LIdeal R | ¬ i j ndx i j | i j LIdeal R i j
9 7 8 sstri + ndx ˙ Base ndx LIdeal R + ndx ˙ ndx i LIdeal R , j LIdeal R RSpan R i LSSum mulGrp R j TopSet ndx ran i LIdeal R j LIdeal R | ¬ i j ndx i j | i j LIdeal R i j
10 5 6 9 strfv ˙ V ˙ = + Base ndx LIdeal R + ndx ˙ ndx i LIdeal R , j LIdeal R RSpan R i LSSum mulGrp R j TopSet ndx ran i LIdeal R j LIdeal R | ¬ i j ndx i j | i j LIdeal R i j
11 3 10 ax-mp ˙ = + Base ndx LIdeal R + ndx ˙ ndx i LIdeal R , j LIdeal R RSpan R i LSSum mulGrp R j TopSet ndx ran i LIdeal R j LIdeal R | ¬ i j ndx i j | i j LIdeal R i j
12 eqid LIdeal R = LIdeal R
13 eqid mulGrp R = mulGrp R
14 eqid LSSum mulGrp R = LSSum mulGrp R
15 12 2 13 14 idlsrgval Could not format ( R e. V -> ( IDLsrg ` R ) = ( { <. ( Base ` ndx ) , ( LIdeal ` R ) >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , ( i e. ( LIdeal ` R ) , j e. ( LIdeal ` R ) |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. ( LIdeal ` R ) |-> { j e. ( LIdeal ` R ) | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ ( LIdeal ` R ) /\ i C_ j ) } >. } ) ) : No typesetting found for |- ( R e. V -> ( IDLsrg ` R ) = ( { <. ( Base ` ndx ) , ( LIdeal ` R ) >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , ( i e. ( LIdeal ` R ) , j e. ( LIdeal ` R ) |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. ( LIdeal ` R ) |-> { j e. ( LIdeal ` R ) | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ ( LIdeal ` R ) /\ i C_ j ) } >. } ) ) with typecode |-
16 1 15 eqtrid R V S = Base ndx LIdeal R + ndx ˙ ndx i LIdeal R , j LIdeal R RSpan R i LSSum mulGrp R j TopSet ndx ran i LIdeal R j LIdeal R | ¬ i j ndx i j | i j LIdeal R i j
17 16 fveq2d R V + S = + Base ndx LIdeal R + ndx ˙ ndx i LIdeal R , j LIdeal R RSpan R i LSSum mulGrp R j TopSet ndx ran i LIdeal R j LIdeal R | ¬ i j ndx i j | i j LIdeal R i j
18 11 17 eqtr4id R V ˙ = + S