Metamath Proof Explorer


Theorem idlsrg0g

Description: The zero ideal is the additive identity of the semiring of ideals. (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypotheses idlsrg0g.1 No typesetting found for |- S = ( IDLsrg ` R ) with typecode |-
idlsrg0g.2 0˙=0R
Assertion idlsrg0g RRing0˙=0S

Proof

Step Hyp Ref Expression
1 idlsrg0g.1 Could not format S = ( IDLsrg ` R ) : No typesetting found for |- S = ( IDLsrg ` R ) with typecode |-
2 idlsrg0g.2 0˙=0R
3 eqid BaseS=BaseS
4 eqid 0S=0S
5 eqid +S=+S
6 eqid LIdealR=LIdealR
7 6 2 lidl0 RRing0˙LIdealR
8 1 6 idlsrgbas RRingLIdealR=BaseS
9 7 8 eleqtrd RRing0˙BaseS
10 eqid LSSumR=LSSumR
11 1 10 idlsrgplusg RRingLSSumR=+S
12 11 adantr RRingiBaseSLSSumR=+S
13 12 oveqd RRingiBaseS0˙LSSumRi=0˙+Si
14 simpr RRingiBaseSiBaseS
15 8 adantr RRingiBaseSLIdealR=BaseS
16 14 15 eleqtrrd RRingiBaseSiLIdealR
17 6 lidlsubg RRingiLIdealRiSubGrpR
18 16 17 syldan RRingiBaseSiSubGrpR
19 2 10 lsm02 iSubGrpR0˙LSSumRi=i
20 18 19 syl RRingiBaseS0˙LSSumRi=i
21 13 20 eqtr3d RRingiBaseS0˙+Si=i
22 12 oveqd RRingiBaseSiLSSumR0˙=i+S0˙
23 2 10 lsm01 iSubGrpRiLSSumR0˙=i
24 18 23 syl RRingiBaseSiLSSumR0˙=i
25 22 24 eqtr3d RRingiBaseSi+S0˙=i
26 3 4 5 9 21 25 ismgmid2 RRing0˙=0S