Description: The zero ideal is the additive identity of the semiring of ideals. (Contributed by Thierry Arnoux, 1-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | idlsrg0g.1 | No typesetting found for |- S = ( IDLsrg ` R ) with typecode |- | |
idlsrg0g.2 | |
||
Assertion | idlsrg0g | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idlsrg0g.1 | Could not format S = ( IDLsrg ` R ) : No typesetting found for |- S = ( IDLsrg ` R ) with typecode |- | |
2 | idlsrg0g.2 | |
|
3 | eqid | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | 6 2 | lidl0 | |
8 | 1 6 | idlsrgbas | |
9 | 7 8 | eleqtrd | |
10 | eqid | |
|
11 | 1 10 | idlsrgplusg | |
12 | 11 | adantr | |
13 | 12 | oveqd | |
14 | simpr | |
|
15 | 8 | adantr | |
16 | 14 15 | eleqtrrd | |
17 | 6 | lidlsubg | |
18 | 16 17 | syldan | |
19 | 2 10 | lsm02 | |
20 | 18 19 | syl | |
21 | 13 20 | eqtr3d | |
22 | 12 | oveqd | |
23 | 2 10 | lsm01 | |
24 | 18 23 | syl | |
25 | 22 24 | eqtr3d | |
26 | 3 4 5 9 21 25 | ismgmid2 | |