Metamath Proof Explorer


Theorem idlsrgmulr

Description: Multiplicative operation of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypotheses idlsrgmulr.1 S = IDLsrg R
idlsrgmulr.2 B = LIdeal R
idlsrgmulr.3 G = mulGrp R
idlsrgmulr.4 ˙ = LSSum G
Assertion idlsrgmulr R V i B , j B RSpan R i ˙ j = S

Proof

Step Hyp Ref Expression
1 idlsrgmulr.1 S = IDLsrg R
2 idlsrgmulr.2 B = LIdeal R
3 idlsrgmulr.3 G = mulGrp R
4 idlsrgmulr.4 ˙ = LSSum G
5 2 fvexi B V
6 5 5 mpoex i B , j B RSpan R i ˙ j V
7 eqid Base ndx B + ndx LSSum R ndx i B , j B RSpan R i ˙ j TopSet ndx ran i B j B | ¬ i j ndx i j | i j B i j = Base ndx B + ndx LSSum R ndx i B , j B RSpan R i ˙ j TopSet ndx ran i B j B | ¬ i j ndx i j | i j B i j
8 7 idlsrgstr Base ndx B + ndx LSSum R ndx i B , j B RSpan R i ˙ j TopSet ndx ran i B j B | ¬ i j ndx i j | i j B i j Struct 1 10
9 mulridx 𝑟 = Slot ndx
10 snsstp3 ndx i B , j B RSpan R i ˙ j Base ndx B + ndx LSSum R ndx i B , j B RSpan R i ˙ j
11 ssun1 Base ndx B + ndx LSSum R ndx i B , j B RSpan R i ˙ j Base ndx B + ndx LSSum R ndx i B , j B RSpan R i ˙ j TopSet ndx ran i B j B | ¬ i j ndx i j | i j B i j
12 10 11 sstri ndx i B , j B RSpan R i ˙ j Base ndx B + ndx LSSum R ndx i B , j B RSpan R i ˙ j TopSet ndx ran i B j B | ¬ i j ndx i j | i j B i j
13 8 9 12 strfv i B , j B RSpan R i ˙ j V i B , j B RSpan R i ˙ j = Base ndx B + ndx LSSum R ndx i B , j B RSpan R i ˙ j TopSet ndx ran i B j B | ¬ i j ndx i j | i j B i j
14 6 13 ax-mp i B , j B RSpan R i ˙ j = Base ndx B + ndx LSSum R ndx i B , j B RSpan R i ˙ j TopSet ndx ran i B j B | ¬ i j ndx i j | i j B i j
15 eqid LSSum R = LSSum R
16 2 15 3 4 idlsrgval R V IDLsrg R = Base ndx B + ndx LSSum R ndx i B , j B RSpan R i ˙ j TopSet ndx ran i B j B | ¬ i j ndx i j | i j B i j
17 1 16 eqtrid R V S = Base ndx B + ndx LSSum R ndx i B , j B RSpan R i ˙ j TopSet ndx ran i B j B | ¬ i j ndx i j | i j B i j
18 17 fveq2d R V S = Base ndx B + ndx LSSum R ndx i B , j B RSpan R i ˙ j TopSet ndx ran i B j B | ¬ i j ndx i j | i j B i j
19 14 18 eqtr4id R V i B , j B RSpan R i ˙ j = S