Metamath Proof Explorer


Theorem idlsrgmulr

Description: Multiplicative operation of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypotheses idlsrgmulr.1 𝑆 = ( IDLsrg ‘ 𝑅 )
idlsrgmulr.2 𝐵 = ( LIdeal ‘ 𝑅 )
idlsrgmulr.3 𝐺 = ( mulGrp ‘ 𝑅 )
idlsrgmulr.4 = ( LSSum ‘ 𝐺 )
Assertion idlsrgmulr ( 𝑅𝑉 → ( 𝑖𝐵 , 𝑗𝐵 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 𝑗 ) ) ) = ( .r𝑆 ) )

Proof

Step Hyp Ref Expression
1 idlsrgmulr.1 𝑆 = ( IDLsrg ‘ 𝑅 )
2 idlsrgmulr.2 𝐵 = ( LIdeal ‘ 𝑅 )
3 idlsrgmulr.3 𝐺 = ( mulGrp ‘ 𝑅 )
4 idlsrgmulr.4 = ( LSSum ‘ 𝐺 )
5 2 fvexi 𝐵 ∈ V
6 5 5 mpoex ( 𝑖𝐵 , 𝑗𝐵 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 𝑗 ) ) ) ∈ V
7 eqid ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐵 , 𝑗𝐵 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐵 ↦ { 𝑗𝐵 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐵𝑖𝑗 ) } ⟩ } ) = ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐵 , 𝑗𝐵 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐵 ↦ { 𝑗𝐵 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐵𝑖𝑗 ) } ⟩ } )
8 7 idlsrgstr ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐵 , 𝑗𝐵 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐵 ↦ { 𝑗𝐵 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐵𝑖𝑗 ) } ⟩ } ) Struct ⟨ 1 , 1 0 ⟩
9 mulrid .r = Slot ( .r ‘ ndx )
10 snsstp3 { ⟨ ( .r ‘ ndx ) , ( 𝑖𝐵 , 𝑗𝐵 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 𝑗 ) ) ) ⟩ } ⊆ { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐵 , 𝑗𝐵 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 𝑗 ) ) ) ⟩ }
11 ssun1 { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐵 , 𝑗𝐵 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 𝑗 ) ) ) ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐵 , 𝑗𝐵 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐵 ↦ { 𝑗𝐵 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐵𝑖𝑗 ) } ⟩ } )
12 10 11 sstri { ⟨ ( .r ‘ ndx ) , ( 𝑖𝐵 , 𝑗𝐵 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 𝑗 ) ) ) ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐵 , 𝑗𝐵 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐵 ↦ { 𝑗𝐵 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐵𝑖𝑗 ) } ⟩ } )
13 8 9 12 strfv ( ( 𝑖𝐵 , 𝑗𝐵 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 𝑗 ) ) ) ∈ V → ( 𝑖𝐵 , 𝑗𝐵 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 𝑗 ) ) ) = ( .r ‘ ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐵 , 𝑗𝐵 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐵 ↦ { 𝑗𝐵 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐵𝑖𝑗 ) } ⟩ } ) ) )
14 6 13 ax-mp ( 𝑖𝐵 , 𝑗𝐵 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 𝑗 ) ) ) = ( .r ‘ ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐵 , 𝑗𝐵 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐵 ↦ { 𝑗𝐵 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐵𝑖𝑗 ) } ⟩ } ) )
15 eqid ( LSSum ‘ 𝑅 ) = ( LSSum ‘ 𝑅 )
16 2 15 3 4 idlsrgval ( 𝑅𝑉 → ( IDLsrg ‘ 𝑅 ) = ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐵 , 𝑗𝐵 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐵 ↦ { 𝑗𝐵 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐵𝑖𝑗 ) } ⟩ } ) )
17 1 16 syl5eq ( 𝑅𝑉𝑆 = ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐵 , 𝑗𝐵 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐵 ↦ { 𝑗𝐵 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐵𝑖𝑗 ) } ⟩ } ) )
18 17 fveq2d ( 𝑅𝑉 → ( .r𝑆 ) = ( .r ‘ ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐵 , 𝑗𝐵 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐵 ↦ { 𝑗𝐵 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐵𝑖𝑗 ) } ⟩ } ) ) )
19 14 18 eqtr4id ( 𝑅𝑉 → ( 𝑖𝐵 , 𝑗𝐵 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 𝑗 ) ) ) = ( .r𝑆 ) )