Metamath Proof Explorer


Theorem idlsrgtset

Description: Topology component of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypotheses idlsrgtset.1 𝑆 = ( IDLsrg ‘ 𝑅 )
idlsrgtset.2 𝐼 = ( LIdeal ‘ 𝑅 )
idlsrgtset.3 𝐽 = ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } )
Assertion idlsrgtset ( 𝑅𝑉𝐽 = ( TopSet ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 idlsrgtset.1 𝑆 = ( IDLsrg ‘ 𝑅 )
2 idlsrgtset.2 𝐼 = ( LIdeal ‘ 𝑅 )
3 idlsrgtset.3 𝐽 = ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } )
4 2 fvexi 𝐼 ∈ V
5 4 mptex ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ∈ V
6 5 rnex ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ∈ V
7 eqid ( { ⟨ ( Base ‘ ndx ) , 𝐼 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐼 , 𝑗𝐼 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐼𝑖𝑗 ) } ⟩ } ) = ( { ⟨ ( Base ‘ ndx ) , 𝐼 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐼 , 𝑗𝐼 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐼𝑖𝑗 ) } ⟩ } )
8 7 idlsrgstr ( { ⟨ ( Base ‘ ndx ) , 𝐼 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐼 , 𝑗𝐼 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐼𝑖𝑗 ) } ⟩ } ) Struct ⟨ 1 , 1 0 ⟩
9 tsetid TopSet = Slot ( TopSet ‘ ndx )
10 snsspr1 { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ⟩ } ⊆ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐼𝑖𝑗 ) } ⟩ }
11 ssun2 { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐼𝑖𝑗 ) } ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , 𝐼 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐼 , 𝑗𝐼 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐼𝑖𝑗 ) } ⟩ } )
12 10 11 sstri { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , 𝐼 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐼 , 𝑗𝐼 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐼𝑖𝑗 ) } ⟩ } )
13 8 9 12 strfv ( ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ∈ V → ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) = ( TopSet ‘ ( { ⟨ ( Base ‘ ndx ) , 𝐼 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐼 , 𝑗𝐼 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐼𝑖𝑗 ) } ⟩ } ) ) )
14 6 13 ax-mp ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) = ( TopSet ‘ ( { ⟨ ( Base ‘ ndx ) , 𝐼 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐼 , 𝑗𝐼 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐼𝑖𝑗 ) } ⟩ } ) )
15 eqid ( LSSum ‘ 𝑅 ) = ( LSSum ‘ 𝑅 )
16 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
17 eqid ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) = ( LSSum ‘ ( mulGrp ‘ 𝑅 ) )
18 2 15 16 17 idlsrgval ( 𝑅𝑉 → ( IDLsrg ‘ 𝑅 ) = ( { ⟨ ( Base ‘ ndx ) , 𝐼 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐼 , 𝑗𝐼 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐼𝑖𝑗 ) } ⟩ } ) )
19 1 18 syl5eq ( 𝑅𝑉𝑆 = ( { ⟨ ( Base ‘ ndx ) , 𝐼 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐼 , 𝑗𝐼 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐼𝑖𝑗 ) } ⟩ } ) )
20 19 fveq2d ( 𝑅𝑉 → ( TopSet ‘ 𝑆 ) = ( TopSet ‘ ( { ⟨ ( Base ‘ ndx ) , 𝐼 ⟩ , ⟨ ( +g ‘ ndx ) , ( LSSum ‘ 𝑅 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑖𝐼 , 𝑗𝐼 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑖 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑗 ) ) ) ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑖 , 𝑗 ⟩ ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐼𝑖𝑗 ) } ⟩ } ) ) )
21 14 20 eqtr4id ( 𝑅𝑉 → ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) = ( TopSet ‘ 𝑆 ) )
22 3 21 syl5eq ( 𝑅𝑉𝐽 = ( TopSet ‘ 𝑆 ) )