Metamath Proof Explorer


Theorem idlsrgmulrval

Description: Value of the ring multiplication for the ideals of a ring R . (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypotheses idlsrgmulrval.1 𝑆 = ( IDLsrg ‘ 𝑅 )
idlsrgmulrval.2 𝐵 = ( LIdeal ‘ 𝑅 )
idlsrgmulrval.3 = ( .r𝑆 )
idlsrgmulrval.4 𝐺 = ( mulGrp ‘ 𝑅 )
idlsrgmulrval.5 · = ( LSSum ‘ 𝐺 )
idlsrgmulrval.6 ( 𝜑𝑅𝑉 )
idlsrgmulrval.7 ( 𝜑𝐼𝐵 )
idlsrgmulrval.8 ( 𝜑𝐽𝐵 )
Assertion idlsrgmulrval ( 𝜑 → ( 𝐼 𝐽 ) = ( ( RSpan ‘ 𝑅 ) ‘ ( 𝐼 · 𝐽 ) ) )

Proof

Step Hyp Ref Expression
1 idlsrgmulrval.1 𝑆 = ( IDLsrg ‘ 𝑅 )
2 idlsrgmulrval.2 𝐵 = ( LIdeal ‘ 𝑅 )
3 idlsrgmulrval.3 = ( .r𝑆 )
4 idlsrgmulrval.4 𝐺 = ( mulGrp ‘ 𝑅 )
5 idlsrgmulrval.5 · = ( LSSum ‘ 𝐺 )
6 idlsrgmulrval.6 ( 𝜑𝑅𝑉 )
7 idlsrgmulrval.7 ( 𝜑𝐼𝐵 )
8 idlsrgmulrval.8 ( 𝜑𝐽𝐵 )
9 1 2 4 5 idlsrgmulr ( 𝑅𝑉 → ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑥 · 𝑦 ) ) ) = ( .r𝑆 ) )
10 6 9 syl ( 𝜑 → ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑥 · 𝑦 ) ) ) = ( .r𝑆 ) )
11 3 10 eqtr4id ( 𝜑 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑥 · 𝑦 ) ) ) )
12 oveq12 ( ( 𝑥 = 𝐼𝑦 = 𝐽 ) → ( 𝑥 · 𝑦 ) = ( 𝐼 · 𝐽 ) )
13 12 adantl ( ( 𝜑 ∧ ( 𝑥 = 𝐼𝑦 = 𝐽 ) ) → ( 𝑥 · 𝑦 ) = ( 𝐼 · 𝐽 ) )
14 13 fveq2d ( ( 𝜑 ∧ ( 𝑥 = 𝐼𝑦 = 𝐽 ) ) → ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑥 · 𝑦 ) ) = ( ( RSpan ‘ 𝑅 ) ‘ ( 𝐼 · 𝐽 ) ) )
15 fvexd ( 𝜑 → ( ( RSpan ‘ 𝑅 ) ‘ ( 𝐼 · 𝐽 ) ) ∈ V )
16 11 14 7 8 15 ovmpod ( 𝜑 → ( 𝐼 𝐽 ) = ( ( RSpan ‘ 𝑅 ) ‘ ( 𝐼 · 𝐽 ) ) )