Step |
Hyp |
Ref |
Expression |
1 |
|
idlsrgmulrval.1 |
⊢ 𝑆 = ( IDLsrg ‘ 𝑅 ) |
2 |
|
idlsrgmulrval.2 |
⊢ 𝐵 = ( LIdeal ‘ 𝑅 ) |
3 |
|
idlsrgmulrval.3 |
⊢ ⊗ = ( .r ‘ 𝑆 ) |
4 |
|
idlsrgmulrval.4 |
⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) |
5 |
|
idlsrgmulrval.5 |
⊢ · = ( LSSum ‘ 𝐺 ) |
6 |
|
idlsrgmulrval.6 |
⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) |
7 |
|
idlsrgmulrval.7 |
⊢ ( 𝜑 → 𝐼 ∈ 𝐵 ) |
8 |
|
idlsrgmulrval.8 |
⊢ ( 𝜑 → 𝐽 ∈ 𝐵 ) |
9 |
1 2 4 5
|
idlsrgmulr |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑥 · 𝑦 ) ) ) = ( .r ‘ 𝑆 ) ) |
10 |
6 9
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑥 · 𝑦 ) ) ) = ( .r ‘ 𝑆 ) ) |
11 |
3 10
|
eqtr4id |
⊢ ( 𝜑 → ⊗ = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑥 · 𝑦 ) ) ) ) |
12 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝐼 ∧ 𝑦 = 𝐽 ) → ( 𝑥 · 𝑦 ) = ( 𝐼 · 𝐽 ) ) |
13 |
12
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐼 ∧ 𝑦 = 𝐽 ) ) → ( 𝑥 · 𝑦 ) = ( 𝐼 · 𝐽 ) ) |
14 |
13
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐼 ∧ 𝑦 = 𝐽 ) ) → ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑥 · 𝑦 ) ) = ( ( RSpan ‘ 𝑅 ) ‘ ( 𝐼 · 𝐽 ) ) ) |
15 |
|
fvexd |
⊢ ( 𝜑 → ( ( RSpan ‘ 𝑅 ) ‘ ( 𝐼 · 𝐽 ) ) ∈ V ) |
16 |
11 14 7 8 15
|
ovmpod |
⊢ ( 𝜑 → ( 𝐼 ⊗ 𝐽 ) = ( ( RSpan ‘ 𝑅 ) ‘ ( 𝐼 · 𝐽 ) ) ) |