| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idlsrgmulrval.1 |
⊢ 𝑆 = ( IDLsrg ‘ 𝑅 ) |
| 2 |
|
idlsrgmulrval.2 |
⊢ 𝐵 = ( LIdeal ‘ 𝑅 ) |
| 3 |
|
idlsrgmulrval.3 |
⊢ ⊗ = ( .r ‘ 𝑆 ) |
| 4 |
|
idlsrgmulrcl.1 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 5 |
|
idlsrgmulrcl.2 |
⊢ ( 𝜑 → 𝐼 ∈ 𝐵 ) |
| 6 |
|
idlsrgmulrcl.3 |
⊢ ( 𝜑 → 𝐽 ∈ 𝐵 ) |
| 7 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 8 |
|
eqid |
⊢ ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) = ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) |
| 9 |
1 2 3 7 8 4 5 6
|
idlsrgmulrval |
⊢ ( 𝜑 → ( 𝐼 ⊗ 𝐽 ) = ( ( RSpan ‘ 𝑅 ) ‘ ( 𝐼 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝐽 ) ) ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 11 |
10 2
|
lidlss |
⊢ ( 𝐼 ∈ 𝐵 → 𝐼 ⊆ ( Base ‘ 𝑅 ) ) |
| 12 |
5 11
|
syl |
⊢ ( 𝜑 → 𝐼 ⊆ ( Base ‘ 𝑅 ) ) |
| 13 |
10 2
|
lidlss |
⊢ ( 𝐽 ∈ 𝐵 → 𝐽 ⊆ ( Base ‘ 𝑅 ) ) |
| 14 |
6 13
|
syl |
⊢ ( 𝜑 → 𝐽 ⊆ ( Base ‘ 𝑅 ) ) |
| 15 |
10 7 8 4 12 14
|
ringlsmss |
⊢ ( 𝜑 → ( 𝐼 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝐽 ) ⊆ ( Base ‘ 𝑅 ) ) |
| 16 |
|
eqid |
⊢ ( RSpan ‘ 𝑅 ) = ( RSpan ‘ 𝑅 ) |
| 17 |
16 10 2
|
rspcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐼 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝐽 ) ⊆ ( Base ‘ 𝑅 ) ) → ( ( RSpan ‘ 𝑅 ) ‘ ( 𝐼 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝐽 ) ) ∈ 𝐵 ) |
| 18 |
4 15 17
|
syl2anc |
⊢ ( 𝜑 → ( ( RSpan ‘ 𝑅 ) ‘ ( 𝐼 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝐽 ) ) ∈ 𝐵 ) |
| 19 |
9 18
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐼 ⊗ 𝐽 ) ∈ 𝐵 ) |