Metamath Proof Explorer


Theorem idlsrgmulrcl

Description: Ideals of a ring R are closed under multiplication. (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypotheses idlsrgmulrval.1 𝑆 = ( IDLsrg ‘ 𝑅 )
idlsrgmulrval.2 𝐵 = ( LIdeal ‘ 𝑅 )
idlsrgmulrval.3 = ( .r𝑆 )
idlsrgmulrcl.1 ( 𝜑𝑅 ∈ Ring )
idlsrgmulrcl.2 ( 𝜑𝐼𝐵 )
idlsrgmulrcl.3 ( 𝜑𝐽𝐵 )
Assertion idlsrgmulrcl ( 𝜑 → ( 𝐼 𝐽 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 idlsrgmulrval.1 𝑆 = ( IDLsrg ‘ 𝑅 )
2 idlsrgmulrval.2 𝐵 = ( LIdeal ‘ 𝑅 )
3 idlsrgmulrval.3 = ( .r𝑆 )
4 idlsrgmulrcl.1 ( 𝜑𝑅 ∈ Ring )
5 idlsrgmulrcl.2 ( 𝜑𝐼𝐵 )
6 idlsrgmulrcl.3 ( 𝜑𝐽𝐵 )
7 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
8 eqid ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) = ( LSSum ‘ ( mulGrp ‘ 𝑅 ) )
9 1 2 3 7 8 4 5 6 idlsrgmulrval ( 𝜑 → ( 𝐼 𝐽 ) = ( ( RSpan ‘ 𝑅 ) ‘ ( 𝐼 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝐽 ) ) )
10 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
11 10 2 lidlss ( 𝐼𝐵𝐼 ⊆ ( Base ‘ 𝑅 ) )
12 5 11 syl ( 𝜑𝐼 ⊆ ( Base ‘ 𝑅 ) )
13 10 2 lidlss ( 𝐽𝐵𝐽 ⊆ ( Base ‘ 𝑅 ) )
14 6 13 syl ( 𝜑𝐽 ⊆ ( Base ‘ 𝑅 ) )
15 10 7 8 4 12 14 ringlsmss ( 𝜑 → ( 𝐼 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝐽 ) ⊆ ( Base ‘ 𝑅 ) )
16 eqid ( RSpan ‘ 𝑅 ) = ( RSpan ‘ 𝑅 )
17 16 10 2 rspcl ( ( 𝑅 ∈ Ring ∧ ( 𝐼 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝐽 ) ⊆ ( Base ‘ 𝑅 ) ) → ( ( RSpan ‘ 𝑅 ) ‘ ( 𝐼 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝐽 ) ) ∈ 𝐵 )
18 4 15 17 syl2anc ( 𝜑 → ( ( RSpan ‘ 𝑅 ) ‘ ( 𝐼 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝐽 ) ) ∈ 𝐵 )
19 9 18 eqeltrd ( 𝜑 → ( 𝐼 𝐽 ) ∈ 𝐵 )