Metamath Proof Explorer


Theorem idlsrgmulrcl

Description: Ideals of a ring R are closed under multiplication. (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypotheses idlsrgmulrval.1
|- S = ( IDLsrg ` R )
idlsrgmulrval.2
|- B = ( LIdeal ` R )
idlsrgmulrval.3
|- .(x) = ( .r ` S )
idlsrgmulrcl.1
|- ( ph -> R e. Ring )
idlsrgmulrcl.2
|- ( ph -> I e. B )
idlsrgmulrcl.3
|- ( ph -> J e. B )
Assertion idlsrgmulrcl
|- ( ph -> ( I .(x) J ) e. B )

Proof

Step Hyp Ref Expression
1 idlsrgmulrval.1
 |-  S = ( IDLsrg ` R )
2 idlsrgmulrval.2
 |-  B = ( LIdeal ` R )
3 idlsrgmulrval.3
 |-  .(x) = ( .r ` S )
4 idlsrgmulrcl.1
 |-  ( ph -> R e. Ring )
5 idlsrgmulrcl.2
 |-  ( ph -> I e. B )
6 idlsrgmulrcl.3
 |-  ( ph -> J e. B )
7 eqid
 |-  ( mulGrp ` R ) = ( mulGrp ` R )
8 eqid
 |-  ( LSSum ` ( mulGrp ` R ) ) = ( LSSum ` ( mulGrp ` R ) )
9 1 2 3 7 8 4 5 6 idlsrgmulrval
 |-  ( ph -> ( I .(x) J ) = ( ( RSpan ` R ) ` ( I ( LSSum ` ( mulGrp ` R ) ) J ) ) )
10 eqid
 |-  ( Base ` R ) = ( Base ` R )
11 10 2 lidlss
 |-  ( I e. B -> I C_ ( Base ` R ) )
12 5 11 syl
 |-  ( ph -> I C_ ( Base ` R ) )
13 10 2 lidlss
 |-  ( J e. B -> J C_ ( Base ` R ) )
14 6 13 syl
 |-  ( ph -> J C_ ( Base ` R ) )
15 10 7 8 4 12 14 ringlsmss
 |-  ( ph -> ( I ( LSSum ` ( mulGrp ` R ) ) J ) C_ ( Base ` R ) )
16 eqid
 |-  ( RSpan ` R ) = ( RSpan ` R )
17 16 10 2 rspcl
 |-  ( ( R e. Ring /\ ( I ( LSSum ` ( mulGrp ` R ) ) J ) C_ ( Base ` R ) ) -> ( ( RSpan ` R ) ` ( I ( LSSum ` ( mulGrp ` R ) ) J ) ) e. B )
18 4 15 17 syl2anc
 |-  ( ph -> ( ( RSpan ` R ) ` ( I ( LSSum ` ( mulGrp ` R ) ) J ) ) e. B )
19 9 18 eqeltrd
 |-  ( ph -> ( I .(x) J ) e. B )