Step |
Hyp |
Ref |
Expression |
1 |
|
idlsrgmulrval.1 |
|- S = ( IDLsrg ` R ) |
2 |
|
idlsrgmulrval.2 |
|- B = ( LIdeal ` R ) |
3 |
|
idlsrgmulrval.3 |
|- .(x) = ( .r ` S ) |
4 |
|
idlsrgmulrcl.1 |
|- ( ph -> R e. Ring ) |
5 |
|
idlsrgmulrcl.2 |
|- ( ph -> I e. B ) |
6 |
|
idlsrgmulrcl.3 |
|- ( ph -> J e. B ) |
7 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
8 |
|
eqid |
|- ( LSSum ` ( mulGrp ` R ) ) = ( LSSum ` ( mulGrp ` R ) ) |
9 |
1 2 3 7 8 4 5 6
|
idlsrgmulrval |
|- ( ph -> ( I .(x) J ) = ( ( RSpan ` R ) ` ( I ( LSSum ` ( mulGrp ` R ) ) J ) ) ) |
10 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
11 |
10 2
|
lidlss |
|- ( I e. B -> I C_ ( Base ` R ) ) |
12 |
5 11
|
syl |
|- ( ph -> I C_ ( Base ` R ) ) |
13 |
10 2
|
lidlss |
|- ( J e. B -> J C_ ( Base ` R ) ) |
14 |
6 13
|
syl |
|- ( ph -> J C_ ( Base ` R ) ) |
15 |
10 7 8 4 12 14
|
ringlsmss |
|- ( ph -> ( I ( LSSum ` ( mulGrp ` R ) ) J ) C_ ( Base ` R ) ) |
16 |
|
eqid |
|- ( RSpan ` R ) = ( RSpan ` R ) |
17 |
16 10 2
|
rspcl |
|- ( ( R e. Ring /\ ( I ( LSSum ` ( mulGrp ` R ) ) J ) C_ ( Base ` R ) ) -> ( ( RSpan ` R ) ` ( I ( LSSum ` ( mulGrp ` R ) ) J ) ) e. B ) |
18 |
4 15 17
|
syl2anc |
|- ( ph -> ( ( RSpan ` R ) ` ( I ( LSSum ` ( mulGrp ` R ) ) J ) ) e. B ) |
19 |
9 18
|
eqeltrd |
|- ( ph -> ( I .(x) J ) e. B ) |