Metamath Proof Explorer


Theorem idlsrgmulrss1

Description: In a commutative ring, the product of two ideals is a subset of the first one. (Contributed by Thierry Arnoux, 16-Jun-2024)

Ref Expression
Hypotheses idlsrgmulrss1.1
|- S = ( IDLsrg ` R )
idlsrgmulrss1.2
|- B = ( LIdeal ` R )
idlsrgmulrss1.3
|- .(x) = ( .r ` S )
idlsrgmulrss1.4
|- .x. = ( .r ` R )
idlsrgmulrss1.5
|- ( ph -> R e. CRing )
idlsrgmulrss1.6
|- ( ph -> I e. B )
idlsrgmulrss1.7
|- ( ph -> J e. B )
Assertion idlsrgmulrss1
|- ( ph -> ( I .(x) J ) C_ I )

Proof

Step Hyp Ref Expression
1 idlsrgmulrss1.1
 |-  S = ( IDLsrg ` R )
2 idlsrgmulrss1.2
 |-  B = ( LIdeal ` R )
3 idlsrgmulrss1.3
 |-  .(x) = ( .r ` S )
4 idlsrgmulrss1.4
 |-  .x. = ( .r ` R )
5 idlsrgmulrss1.5
 |-  ( ph -> R e. CRing )
6 idlsrgmulrss1.6
 |-  ( ph -> I e. B )
7 idlsrgmulrss1.7
 |-  ( ph -> J e. B )
8 eqid
 |-  ( mulGrp ` R ) = ( mulGrp ` R )
9 eqid
 |-  ( LSSum ` ( mulGrp ` R ) ) = ( LSSum ` ( mulGrp ` R ) )
10 1 2 3 8 9 5 6 7 idlsrgmulrval
 |-  ( ph -> ( I .(x) J ) = ( ( RSpan ` R ) ` ( I ( LSSum ` ( mulGrp ` R ) ) J ) ) )
11 crngring
 |-  ( R e. CRing -> R e. Ring )
12 rlmlmod
 |-  ( R e. Ring -> ( ringLMod ` R ) e. LMod )
13 5 11 12 3syl
 |-  ( ph -> ( ringLMod ` R ) e. LMod )
14 eqid
 |-  ( Base ` R ) = ( Base ` R )
15 14 2 lidlss
 |-  ( I e. B -> I C_ ( Base ` R ) )
16 6 15 syl
 |-  ( ph -> I C_ ( Base ` R ) )
17 14 2 lidlss
 |-  ( J e. B -> J C_ ( Base ` R ) )
18 7 17 syl
 |-  ( ph -> J C_ ( Base ` R ) )
19 6 2 eleqtrdi
 |-  ( ph -> I e. ( LIdeal ` R ) )
20 14 8 9 5 18 19 ringlsmss1
 |-  ( ph -> ( I ( LSSum ` ( mulGrp ` R ) ) J ) C_ I )
21 rlmbas
 |-  ( Base ` R ) = ( Base ` ( ringLMod ` R ) )
22 rspval
 |-  ( RSpan ` R ) = ( LSpan ` ( ringLMod ` R ) )
23 21 22 lspss
 |-  ( ( ( ringLMod ` R ) e. LMod /\ I C_ ( Base ` R ) /\ ( I ( LSSum ` ( mulGrp ` R ) ) J ) C_ I ) -> ( ( RSpan ` R ) ` ( I ( LSSum ` ( mulGrp ` R ) ) J ) ) C_ ( ( RSpan ` R ) ` I ) )
24 13 16 20 23 syl3anc
 |-  ( ph -> ( ( RSpan ` R ) ` ( I ( LSSum ` ( mulGrp ` R ) ) J ) ) C_ ( ( RSpan ` R ) ` I ) )
25 5 11 syl
 |-  ( ph -> R e. Ring )
26 eqid
 |-  ( RSpan ` R ) = ( RSpan ` R )
27 26 2 rspidlid
 |-  ( ( R e. Ring /\ I e. B ) -> ( ( RSpan ` R ) ` I ) = I )
28 25 6 27 syl2anc
 |-  ( ph -> ( ( RSpan ` R ) ` I ) = I )
29 24 28 sseqtrd
 |-  ( ph -> ( ( RSpan ` R ) ` ( I ( LSSum ` ( mulGrp ` R ) ) J ) ) C_ I )
30 10 29 eqsstrd
 |-  ( ph -> ( I .(x) J ) C_ I )