| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idlsrgmulrss2.1 |
|- S = ( IDLsrg ` R ) |
| 2 |
|
idlsrgmulrss2.2 |
|- B = ( LIdeal ` R ) |
| 3 |
|
idlsrgmulrss2.3 |
|- .(x) = ( .r ` S ) |
| 4 |
|
idlsrgmulrss2.5 |
|- .x. = ( .r ` R ) |
| 5 |
|
idlsrgmulrss2.6 |
|- ( ph -> R e. Ring ) |
| 6 |
|
idlsrgmulrss2.7 |
|- ( ph -> I e. B ) |
| 7 |
|
idlsrgmulrss2.8 |
|- ( ph -> J e. B ) |
| 8 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 9 |
|
eqid |
|- ( LSSum ` ( mulGrp ` R ) ) = ( LSSum ` ( mulGrp ` R ) ) |
| 10 |
1 2 3 8 9 5 6 7
|
idlsrgmulrval |
|- ( ph -> ( I .(x) J ) = ( ( RSpan ` R ) ` ( I ( LSSum ` ( mulGrp ` R ) ) J ) ) ) |
| 11 |
|
rlmlmod |
|- ( R e. Ring -> ( ringLMod ` R ) e. LMod ) |
| 12 |
5 11
|
syl |
|- ( ph -> ( ringLMod ` R ) e. LMod ) |
| 13 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 14 |
13 2
|
lidlss |
|- ( J e. B -> J C_ ( Base ` R ) ) |
| 15 |
7 14
|
syl |
|- ( ph -> J C_ ( Base ` R ) ) |
| 16 |
13 2
|
lidlss |
|- ( I e. B -> I C_ ( Base ` R ) ) |
| 17 |
6 16
|
syl |
|- ( ph -> I C_ ( Base ` R ) ) |
| 18 |
7 2
|
eleqtrdi |
|- ( ph -> J e. ( LIdeal ` R ) ) |
| 19 |
13 8 9 5 17 18
|
ringlsmss2 |
|- ( ph -> ( I ( LSSum ` ( mulGrp ` R ) ) J ) C_ J ) |
| 20 |
|
rlmbas |
|- ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) |
| 21 |
|
rspval |
|- ( RSpan ` R ) = ( LSpan ` ( ringLMod ` R ) ) |
| 22 |
20 21
|
lspss |
|- ( ( ( ringLMod ` R ) e. LMod /\ J C_ ( Base ` R ) /\ ( I ( LSSum ` ( mulGrp ` R ) ) J ) C_ J ) -> ( ( RSpan ` R ) ` ( I ( LSSum ` ( mulGrp ` R ) ) J ) ) C_ ( ( RSpan ` R ) ` J ) ) |
| 23 |
12 15 19 22
|
syl3anc |
|- ( ph -> ( ( RSpan ` R ) ` ( I ( LSSum ` ( mulGrp ` R ) ) J ) ) C_ ( ( RSpan ` R ) ` J ) ) |
| 24 |
|
eqid |
|- ( RSpan ` R ) = ( RSpan ` R ) |
| 25 |
24 2
|
rspidlid |
|- ( ( R e. Ring /\ J e. B ) -> ( ( RSpan ` R ) ` J ) = J ) |
| 26 |
5 7 25
|
syl2anc |
|- ( ph -> ( ( RSpan ` R ) ` J ) = J ) |
| 27 |
23 26
|
sseqtrd |
|- ( ph -> ( ( RSpan ` R ) ` ( I ( LSSum ` ( mulGrp ` R ) ) J ) ) C_ J ) |
| 28 |
10 27
|
eqsstrd |
|- ( ph -> ( I .(x) J ) C_ J ) |