| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idlsrgmulrss2.1 |  |-  S = ( IDLsrg ` R ) | 
						
							| 2 |  | idlsrgmulrss2.2 |  |-  B = ( LIdeal ` R ) | 
						
							| 3 |  | idlsrgmulrss2.3 |  |-  .(x) = ( .r ` S ) | 
						
							| 4 |  | idlsrgmulrss2.5 |  |-  .x. = ( .r ` R ) | 
						
							| 5 |  | idlsrgmulrss2.6 |  |-  ( ph -> R e. Ring ) | 
						
							| 6 |  | idlsrgmulrss2.7 |  |-  ( ph -> I e. B ) | 
						
							| 7 |  | idlsrgmulrss2.8 |  |-  ( ph -> J e. B ) | 
						
							| 8 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 9 |  | eqid |  |-  ( LSSum ` ( mulGrp ` R ) ) = ( LSSum ` ( mulGrp ` R ) ) | 
						
							| 10 | 1 2 3 8 9 5 6 7 | idlsrgmulrval |  |-  ( ph -> ( I .(x) J ) = ( ( RSpan ` R ) ` ( I ( LSSum ` ( mulGrp ` R ) ) J ) ) ) | 
						
							| 11 |  | rlmlmod |  |-  ( R e. Ring -> ( ringLMod ` R ) e. LMod ) | 
						
							| 12 | 5 11 | syl |  |-  ( ph -> ( ringLMod ` R ) e. LMod ) | 
						
							| 13 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 14 | 13 2 | lidlss |  |-  ( J e. B -> J C_ ( Base ` R ) ) | 
						
							| 15 | 7 14 | syl |  |-  ( ph -> J C_ ( Base ` R ) ) | 
						
							| 16 | 13 2 | lidlss |  |-  ( I e. B -> I C_ ( Base ` R ) ) | 
						
							| 17 | 6 16 | syl |  |-  ( ph -> I C_ ( Base ` R ) ) | 
						
							| 18 | 7 2 | eleqtrdi |  |-  ( ph -> J e. ( LIdeal ` R ) ) | 
						
							| 19 | 13 8 9 5 17 18 | ringlsmss2 |  |-  ( ph -> ( I ( LSSum ` ( mulGrp ` R ) ) J ) C_ J ) | 
						
							| 20 |  | rlmbas |  |-  ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) | 
						
							| 21 |  | rspval |  |-  ( RSpan ` R ) = ( LSpan ` ( ringLMod ` R ) ) | 
						
							| 22 | 20 21 | lspss |  |-  ( ( ( ringLMod ` R ) e. LMod /\ J C_ ( Base ` R ) /\ ( I ( LSSum ` ( mulGrp ` R ) ) J ) C_ J ) -> ( ( RSpan ` R ) ` ( I ( LSSum ` ( mulGrp ` R ) ) J ) ) C_ ( ( RSpan ` R ) ` J ) ) | 
						
							| 23 | 12 15 19 22 | syl3anc |  |-  ( ph -> ( ( RSpan ` R ) ` ( I ( LSSum ` ( mulGrp ` R ) ) J ) ) C_ ( ( RSpan ` R ) ` J ) ) | 
						
							| 24 |  | eqid |  |-  ( RSpan ` R ) = ( RSpan ` R ) | 
						
							| 25 | 24 2 | rspidlid |  |-  ( ( R e. Ring /\ J e. B ) -> ( ( RSpan ` R ) ` J ) = J ) | 
						
							| 26 | 5 7 25 | syl2anc |  |-  ( ph -> ( ( RSpan ` R ) ` J ) = J ) | 
						
							| 27 | 23 26 | sseqtrd |  |-  ( ph -> ( ( RSpan ` R ) ` ( I ( LSSum ` ( mulGrp ` R ) ) J ) ) C_ J ) | 
						
							| 28 | 10 27 | eqsstrd |  |-  ( ph -> ( I .(x) J ) C_ J ) |