| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idlsrgmulrss2.1 | ⊢ 𝑆  =  ( IDLsrg ‘ 𝑅 ) | 
						
							| 2 |  | idlsrgmulrss2.2 | ⊢ 𝐵  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 3 |  | idlsrgmulrss2.3 | ⊢  ⊗   =  ( .r ‘ 𝑆 ) | 
						
							| 4 |  | idlsrgmulrss2.5 | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 5 |  | idlsrgmulrss2.6 | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 6 |  | idlsrgmulrss2.7 | ⊢ ( 𝜑  →  𝐼  ∈  𝐵 ) | 
						
							| 7 |  | idlsrgmulrss2.8 | ⊢ ( 𝜑  →  𝐽  ∈  𝐵 ) | 
						
							| 8 |  | eqid | ⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 9 |  | eqid | ⊢ ( LSSum ‘ ( mulGrp ‘ 𝑅 ) )  =  ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 10 | 1 2 3 8 9 5 6 7 | idlsrgmulrval | ⊢ ( 𝜑  →  ( 𝐼  ⊗  𝐽 )  =  ( ( RSpan ‘ 𝑅 ) ‘ ( 𝐼 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝐽 ) ) ) | 
						
							| 11 |  | rlmlmod | ⊢ ( 𝑅  ∈  Ring  →  ( ringLMod ‘ 𝑅 )  ∈  LMod ) | 
						
							| 12 | 5 11 | syl | ⊢ ( 𝜑  →  ( ringLMod ‘ 𝑅 )  ∈  LMod ) | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 14 | 13 2 | lidlss | ⊢ ( 𝐽  ∈  𝐵  →  𝐽  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 15 | 7 14 | syl | ⊢ ( 𝜑  →  𝐽  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 16 | 13 2 | lidlss | ⊢ ( 𝐼  ∈  𝐵  →  𝐼  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 17 | 6 16 | syl | ⊢ ( 𝜑  →  𝐼  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 18 | 7 2 | eleqtrdi | ⊢ ( 𝜑  →  𝐽  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 19 | 13 8 9 5 17 18 | ringlsmss2 | ⊢ ( 𝜑  →  ( 𝐼 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝐽 )  ⊆  𝐽 ) | 
						
							| 20 |  | rlmbas | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ ( ringLMod ‘ 𝑅 ) ) | 
						
							| 21 |  | rspval | ⊢ ( RSpan ‘ 𝑅 )  =  ( LSpan ‘ ( ringLMod ‘ 𝑅 ) ) | 
						
							| 22 | 20 21 | lspss | ⊢ ( ( ( ringLMod ‘ 𝑅 )  ∈  LMod  ∧  𝐽  ⊆  ( Base ‘ 𝑅 )  ∧  ( 𝐼 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝐽 )  ⊆  𝐽 )  →  ( ( RSpan ‘ 𝑅 ) ‘ ( 𝐼 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝐽 ) )  ⊆  ( ( RSpan ‘ 𝑅 ) ‘ 𝐽 ) ) | 
						
							| 23 | 12 15 19 22 | syl3anc | ⊢ ( 𝜑  →  ( ( RSpan ‘ 𝑅 ) ‘ ( 𝐼 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝐽 ) )  ⊆  ( ( RSpan ‘ 𝑅 ) ‘ 𝐽 ) ) | 
						
							| 24 |  | eqid | ⊢ ( RSpan ‘ 𝑅 )  =  ( RSpan ‘ 𝑅 ) | 
						
							| 25 | 24 2 | rspidlid | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐽  ∈  𝐵 )  →  ( ( RSpan ‘ 𝑅 ) ‘ 𝐽 )  =  𝐽 ) | 
						
							| 26 | 5 7 25 | syl2anc | ⊢ ( 𝜑  →  ( ( RSpan ‘ 𝑅 ) ‘ 𝐽 )  =  𝐽 ) | 
						
							| 27 | 23 26 | sseqtrd | ⊢ ( 𝜑  →  ( ( RSpan ‘ 𝑅 ) ‘ ( 𝐼 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝐽 ) )  ⊆  𝐽 ) | 
						
							| 28 | 10 27 | eqsstrd | ⊢ ( 𝜑  →  ( 𝐼  ⊗  𝐽 )  ⊆  𝐽 ) |