Metamath Proof Explorer
Description: In a commutative ring, the product of two ideals is a subset of their
intersection. (Contributed by Thierry Arnoux, 17-Jun-2024)
|
|
Ref |
Expression |
|
Hypotheses |
idlsrgmulrssin.1 |
⊢ 𝑆 = ( IDLsrg ‘ 𝑅 ) |
|
|
idlsrgmulrssin.2 |
⊢ 𝐵 = ( LIdeal ‘ 𝑅 ) |
|
|
idlsrgmulrssin.3 |
⊢ ⊗ = ( .r ‘ 𝑆 ) |
|
|
idlsrgmulrssin.4 |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
|
|
idlsrgmulrssin.5 |
⊢ ( 𝜑 → 𝐼 ∈ 𝐵 ) |
|
|
idlsrgmulrssin.6 |
⊢ ( 𝜑 → 𝐽 ∈ 𝐵 ) |
|
Assertion |
idlsrgmulrssin |
⊢ ( 𝜑 → ( 𝐼 ⊗ 𝐽 ) ⊆ ( 𝐼 ∩ 𝐽 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
idlsrgmulrssin.1 |
⊢ 𝑆 = ( IDLsrg ‘ 𝑅 ) |
2 |
|
idlsrgmulrssin.2 |
⊢ 𝐵 = ( LIdeal ‘ 𝑅 ) |
3 |
|
idlsrgmulrssin.3 |
⊢ ⊗ = ( .r ‘ 𝑆 ) |
4 |
|
idlsrgmulrssin.4 |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
5 |
|
idlsrgmulrssin.5 |
⊢ ( 𝜑 → 𝐼 ∈ 𝐵 ) |
6 |
|
idlsrgmulrssin.6 |
⊢ ( 𝜑 → 𝐽 ∈ 𝐵 ) |
7 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
8 |
1 2 3 7 4 5 6
|
idlsrgmulrss1 |
⊢ ( 𝜑 → ( 𝐼 ⊗ 𝐽 ) ⊆ 𝐼 ) |
9 |
4
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
10 |
1 2 3 7 9 5 6
|
idlsrgmulrss2 |
⊢ ( 𝜑 → ( 𝐼 ⊗ 𝐽 ) ⊆ 𝐽 ) |
11 |
8 10
|
ssind |
⊢ ( 𝜑 → ( 𝐼 ⊗ 𝐽 ) ⊆ ( 𝐼 ∩ 𝐽 ) ) |