Metamath Proof Explorer
		
		
		
		Description:  In a commutative ring, the product of two ideals is a subset of their
       intersection.  (Contributed by Thierry Arnoux, 17-Jun-2024)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | idlsrgmulrssin.1 | ⊢ 𝑆  =  ( IDLsrg ‘ 𝑅 ) | 
					
						|  |  | idlsrgmulrssin.2 | ⊢ 𝐵  =  ( LIdeal ‘ 𝑅 ) | 
					
						|  |  | idlsrgmulrssin.3 | ⊢  ⊗   =  ( .r ‘ 𝑆 ) | 
					
						|  |  | idlsrgmulrssin.4 | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
					
						|  |  | idlsrgmulrssin.5 | ⊢ ( 𝜑  →  𝐼  ∈  𝐵 ) | 
					
						|  |  | idlsrgmulrssin.6 | ⊢ ( 𝜑  →  𝐽  ∈  𝐵 ) | 
				
					|  | Assertion | idlsrgmulrssin | ⊢  ( 𝜑  →  ( 𝐼  ⊗  𝐽 )  ⊆  ( 𝐼  ∩  𝐽 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idlsrgmulrssin.1 | ⊢ 𝑆  =  ( IDLsrg ‘ 𝑅 ) | 
						
							| 2 |  | idlsrgmulrssin.2 | ⊢ 𝐵  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 3 |  | idlsrgmulrssin.3 | ⊢  ⊗   =  ( .r ‘ 𝑆 ) | 
						
							| 4 |  | idlsrgmulrssin.4 | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 5 |  | idlsrgmulrssin.5 | ⊢ ( 𝜑  →  𝐼  ∈  𝐵 ) | 
						
							| 6 |  | idlsrgmulrssin.6 | ⊢ ( 𝜑  →  𝐽  ∈  𝐵 ) | 
						
							| 7 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 8 | 1 2 3 7 4 5 6 | idlsrgmulrss1 | ⊢ ( 𝜑  →  ( 𝐼  ⊗  𝐽 )  ⊆  𝐼 ) | 
						
							| 9 | 4 | crngringd | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 10 | 1 2 3 7 9 5 6 | idlsrgmulrss2 | ⊢ ( 𝜑  →  ( 𝐼  ⊗  𝐽 )  ⊆  𝐽 ) | 
						
							| 11 | 8 10 | ssind | ⊢ ( 𝜑  →  ( 𝐼  ⊗  𝐽 )  ⊆  ( 𝐼  ∩  𝐽 ) ) |