Metamath Proof Explorer


Theorem idlsrgmulrssin

Description: In a commutative ring, the product of two ideals is a subset of their intersection. (Contributed by Thierry Arnoux, 17-Jun-2024)

Ref Expression
Hypotheses idlsrgmulrssin.1 𝑆 = ( IDLsrg ‘ 𝑅 )
idlsrgmulrssin.2 𝐵 = ( LIdeal ‘ 𝑅 )
idlsrgmulrssin.3 = ( .r𝑆 )
idlsrgmulrssin.4 ( 𝜑𝑅 ∈ CRing )
idlsrgmulrssin.5 ( 𝜑𝐼𝐵 )
idlsrgmulrssin.6 ( 𝜑𝐽𝐵 )
Assertion idlsrgmulrssin ( 𝜑 → ( 𝐼 𝐽 ) ⊆ ( 𝐼𝐽 ) )

Proof

Step Hyp Ref Expression
1 idlsrgmulrssin.1 𝑆 = ( IDLsrg ‘ 𝑅 )
2 idlsrgmulrssin.2 𝐵 = ( LIdeal ‘ 𝑅 )
3 idlsrgmulrssin.3 = ( .r𝑆 )
4 idlsrgmulrssin.4 ( 𝜑𝑅 ∈ CRing )
5 idlsrgmulrssin.5 ( 𝜑𝐼𝐵 )
6 idlsrgmulrssin.6 ( 𝜑𝐽𝐵 )
7 eqid ( .r𝑅 ) = ( .r𝑅 )
8 1 2 3 7 4 5 6 idlsrgmulrss1 ( 𝜑 → ( 𝐼 𝐽 ) ⊆ 𝐼 )
9 4 crngringd ( 𝜑𝑅 ∈ Ring )
10 1 2 3 7 9 5 6 idlsrgmulrss2 ( 𝜑 → ( 𝐼 𝐽 ) ⊆ 𝐽 )
11 8 10 ssind ( 𝜑 → ( 𝐼 𝐽 ) ⊆ ( 𝐼𝐽 ) )