Metamath Proof Explorer
		
		
		
		Description:  In a commutative ring, the product of two ideals is a subset of their
       intersection.  (Contributed by Thierry Arnoux, 17-Jun-2024)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | idlsrgmulrssin.1 |  | 
					
						|  |  | idlsrgmulrssin.2 |  | 
					
						|  |  | idlsrgmulrssin.3 |  | 
					
						|  |  | idlsrgmulrssin.4 |  | 
					
						|  |  | idlsrgmulrssin.5 |  | 
					
						|  |  | idlsrgmulrssin.6 |  | 
				
					|  | Assertion | idlsrgmulrssin |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idlsrgmulrssin.1 |  | 
						
							| 2 |  | idlsrgmulrssin.2 |  | 
						
							| 3 |  | idlsrgmulrssin.3 |  | 
						
							| 4 |  | idlsrgmulrssin.4 |  | 
						
							| 5 |  | idlsrgmulrssin.5 |  | 
						
							| 6 |  | idlsrgmulrssin.6 |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 | 1 2 3 7 4 5 6 | idlsrgmulrss1 |  | 
						
							| 9 | 4 | crngringd |  | 
						
							| 10 | 1 2 3 7 9 5 6 | idlsrgmulrss2 |  | 
						
							| 11 | 8 10 | ssind |  |