Metamath Proof Explorer


Theorem idlsrgmulrss2

Description: The product of two ideals is a subset of the second one. (Contributed by Thierry Arnoux, 2-Jun-2024)

Ref Expression
Hypotheses idlsrgmulrss2.1 No typesetting found for |- S = ( IDLsrg ` R ) with typecode |-
idlsrgmulrss2.2 B = LIdeal R
idlsrgmulrss2.3 ˙ = S
idlsrgmulrss2.5 · ˙ = R
idlsrgmulrss2.6 φ R Ring
idlsrgmulrss2.7 φ I B
idlsrgmulrss2.8 φ J B
Assertion idlsrgmulrss2 φ I ˙ J J

Proof

Step Hyp Ref Expression
1 idlsrgmulrss2.1 Could not format S = ( IDLsrg ` R ) : No typesetting found for |- S = ( IDLsrg ` R ) with typecode |-
2 idlsrgmulrss2.2 B = LIdeal R
3 idlsrgmulrss2.3 ˙ = S
4 idlsrgmulrss2.5 · ˙ = R
5 idlsrgmulrss2.6 φ R Ring
6 idlsrgmulrss2.7 φ I B
7 idlsrgmulrss2.8 φ J B
8 eqid mulGrp R = mulGrp R
9 eqid LSSum mulGrp R = LSSum mulGrp R
10 1 2 3 8 9 5 6 7 idlsrgmulrval φ I ˙ J = RSpan R I LSSum mulGrp R J
11 rlmlmod R Ring ringLMod R LMod
12 5 11 syl φ ringLMod R LMod
13 eqid Base R = Base R
14 13 2 lidlss J B J Base R
15 7 14 syl φ J Base R
16 13 2 lidlss I B I Base R
17 6 16 syl φ I Base R
18 7 2 eleqtrdi φ J LIdeal R
19 13 8 9 5 17 18 ringlsmss2 φ I LSSum mulGrp R J J
20 rlmbas Base R = Base ringLMod R
21 rspval RSpan R = LSpan ringLMod R
22 20 21 lspss ringLMod R LMod J Base R I LSSum mulGrp R J J RSpan R I LSSum mulGrp R J RSpan R J
23 12 15 19 22 syl3anc φ RSpan R I LSSum mulGrp R J RSpan R J
24 eqid RSpan R = RSpan R
25 24 2 rspidlid R Ring J B RSpan R J = J
26 5 7 25 syl2anc φ RSpan R J = J
27 23 26 sseqtrd φ RSpan R I LSSum mulGrp R J J
28 10 27 eqsstrd φ I ˙ J J