Metamath Proof Explorer


Theorem idlsrgmulrval

Description: Value of the ring multiplication for the ideals of a ring R . (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypotheses idlsrgmulrval.1 No typesetting found for |- S = ( IDLsrg ` R ) with typecode |-
idlsrgmulrval.2 B = LIdeal R
idlsrgmulrval.3 ˙ = S
idlsrgmulrval.4 G = mulGrp R
idlsrgmulrval.5 · ˙ = LSSum G
idlsrgmulrval.6 φ R V
idlsrgmulrval.7 φ I B
idlsrgmulrval.8 φ J B
Assertion idlsrgmulrval φ I ˙ J = RSpan R I · ˙ J

Proof

Step Hyp Ref Expression
1 idlsrgmulrval.1 Could not format S = ( IDLsrg ` R ) : No typesetting found for |- S = ( IDLsrg ` R ) with typecode |-
2 idlsrgmulrval.2 B = LIdeal R
3 idlsrgmulrval.3 ˙ = S
4 idlsrgmulrval.4 G = mulGrp R
5 idlsrgmulrval.5 · ˙ = LSSum G
6 idlsrgmulrval.6 φ R V
7 idlsrgmulrval.7 φ I B
8 idlsrgmulrval.8 φ J B
9 1 2 4 5 idlsrgmulr R V x B , y B RSpan R x · ˙ y = S
10 6 9 syl φ x B , y B RSpan R x · ˙ y = S
11 3 10 eqtr4id φ ˙ = x B , y B RSpan R x · ˙ y
12 oveq12 x = I y = J x · ˙ y = I · ˙ J
13 12 adantl φ x = I y = J x · ˙ y = I · ˙ J
14 13 fveq2d φ x = I y = J RSpan R x · ˙ y = RSpan R I · ˙ J
15 fvexd φ RSpan R I · ˙ J V
16 11 14 7 8 15 ovmpod φ I ˙ J = RSpan R I · ˙ J