Metamath Proof Explorer


Theorem idlsrgmulrval

Description: Value of the ring multiplication for the ideals of a ring R . (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypotheses idlsrgmulrval.1 No typesetting found for |- S = ( IDLsrg ` R ) with typecode |-
idlsrgmulrval.2 B=LIdealR
idlsrgmulrval.3 ˙=S
idlsrgmulrval.4 G=mulGrpR
idlsrgmulrval.5 ·˙=LSSumG
idlsrgmulrval.6 φRV
idlsrgmulrval.7 φIB
idlsrgmulrval.8 φJB
Assertion idlsrgmulrval φI˙J=RSpanRI·˙J

Proof

Step Hyp Ref Expression
1 idlsrgmulrval.1 Could not format S = ( IDLsrg ` R ) : No typesetting found for |- S = ( IDLsrg ` R ) with typecode |-
2 idlsrgmulrval.2 B=LIdealR
3 idlsrgmulrval.3 ˙=S
4 idlsrgmulrval.4 G=mulGrpR
5 idlsrgmulrval.5 ·˙=LSSumG
6 idlsrgmulrval.6 φRV
7 idlsrgmulrval.7 φIB
8 idlsrgmulrval.8 φJB
9 1 2 4 5 idlsrgmulr RVxB,yBRSpanRx·˙y=S
10 6 9 syl φxB,yBRSpanRx·˙y=S
11 3 10 eqtr4id φ˙=xB,yBRSpanRx·˙y
12 oveq12 x=Iy=Jx·˙y=I·˙J
13 12 adantl φx=Iy=Jx·˙y=I·˙J
14 13 fveq2d φx=Iy=JRSpanRx·˙y=RSpanRI·˙J
15 fvexd φRSpanRI·˙JV
16 11 14 7 8 15 ovmpod φI˙J=RSpanRI·˙J