Metamath Proof Explorer


Theorem idlsrgmulrval

Description: Value of the ring multiplication for the ideals of a ring R . (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypotheses idlsrgmulrval.1
|- S = ( IDLsrg ` R )
idlsrgmulrval.2
|- B = ( LIdeal ` R )
idlsrgmulrval.3
|- .(x) = ( .r ` S )
idlsrgmulrval.4
|- G = ( mulGrp ` R )
idlsrgmulrval.5
|- .x. = ( LSSum ` G )
idlsrgmulrval.6
|- ( ph -> R e. V )
idlsrgmulrval.7
|- ( ph -> I e. B )
idlsrgmulrval.8
|- ( ph -> J e. B )
Assertion idlsrgmulrval
|- ( ph -> ( I .(x) J ) = ( ( RSpan ` R ) ` ( I .x. J ) ) )

Proof

Step Hyp Ref Expression
1 idlsrgmulrval.1
 |-  S = ( IDLsrg ` R )
2 idlsrgmulrval.2
 |-  B = ( LIdeal ` R )
3 idlsrgmulrval.3
 |-  .(x) = ( .r ` S )
4 idlsrgmulrval.4
 |-  G = ( mulGrp ` R )
5 idlsrgmulrval.5
 |-  .x. = ( LSSum ` G )
6 idlsrgmulrval.6
 |-  ( ph -> R e. V )
7 idlsrgmulrval.7
 |-  ( ph -> I e. B )
8 idlsrgmulrval.8
 |-  ( ph -> J e. B )
9 1 2 4 5 idlsrgmulr
 |-  ( R e. V -> ( x e. B , y e. B |-> ( ( RSpan ` R ) ` ( x .x. y ) ) ) = ( .r ` S ) )
10 6 9 syl
 |-  ( ph -> ( x e. B , y e. B |-> ( ( RSpan ` R ) ` ( x .x. y ) ) ) = ( .r ` S ) )
11 3 10 eqtr4id
 |-  ( ph -> .(x) = ( x e. B , y e. B |-> ( ( RSpan ` R ) ` ( x .x. y ) ) ) )
12 oveq12
 |-  ( ( x = I /\ y = J ) -> ( x .x. y ) = ( I .x. J ) )
13 12 adantl
 |-  ( ( ph /\ ( x = I /\ y = J ) ) -> ( x .x. y ) = ( I .x. J ) )
14 13 fveq2d
 |-  ( ( ph /\ ( x = I /\ y = J ) ) -> ( ( RSpan ` R ) ` ( x .x. y ) ) = ( ( RSpan ` R ) ` ( I .x. J ) ) )
15 fvexd
 |-  ( ph -> ( ( RSpan ` R ) ` ( I .x. J ) ) e. _V )
16 11 14 7 8 15 ovmpod
 |-  ( ph -> ( I .(x) J ) = ( ( RSpan ` R ) ` ( I .x. J ) ) )