Step |
Hyp |
Ref |
Expression |
1 |
|
idlsrgmulrval.1 |
|- S = ( IDLsrg ` R ) |
2 |
|
idlsrgmulrval.2 |
|- B = ( LIdeal ` R ) |
3 |
|
idlsrgmulrval.3 |
|- .(x) = ( .r ` S ) |
4 |
|
idlsrgmulrval.4 |
|- G = ( mulGrp ` R ) |
5 |
|
idlsrgmulrval.5 |
|- .x. = ( LSSum ` G ) |
6 |
|
idlsrgmulrval.6 |
|- ( ph -> R e. V ) |
7 |
|
idlsrgmulrval.7 |
|- ( ph -> I e. B ) |
8 |
|
idlsrgmulrval.8 |
|- ( ph -> J e. B ) |
9 |
1 2 4 5
|
idlsrgmulr |
|- ( R e. V -> ( x e. B , y e. B |-> ( ( RSpan ` R ) ` ( x .x. y ) ) ) = ( .r ` S ) ) |
10 |
6 9
|
syl |
|- ( ph -> ( x e. B , y e. B |-> ( ( RSpan ` R ) ` ( x .x. y ) ) ) = ( .r ` S ) ) |
11 |
3 10
|
eqtr4id |
|- ( ph -> .(x) = ( x e. B , y e. B |-> ( ( RSpan ` R ) ` ( x .x. y ) ) ) ) |
12 |
|
oveq12 |
|- ( ( x = I /\ y = J ) -> ( x .x. y ) = ( I .x. J ) ) |
13 |
12
|
adantl |
|- ( ( ph /\ ( x = I /\ y = J ) ) -> ( x .x. y ) = ( I .x. J ) ) |
14 |
13
|
fveq2d |
|- ( ( ph /\ ( x = I /\ y = J ) ) -> ( ( RSpan ` R ) ` ( x .x. y ) ) = ( ( RSpan ` R ) ` ( I .x. J ) ) ) |
15 |
|
fvexd |
|- ( ph -> ( ( RSpan ` R ) ` ( I .x. J ) ) e. _V ) |
16 |
11 14 7 8 15
|
ovmpod |
|- ( ph -> ( I .(x) J ) = ( ( RSpan ` R ) ` ( I .x. J ) ) ) |