| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idlsrgmulr.1 |
|- S = ( IDLsrg ` R ) |
| 2 |
|
idlsrgmulr.2 |
|- B = ( LIdeal ` R ) |
| 3 |
|
idlsrgmulr.3 |
|- G = ( mulGrp ` R ) |
| 4 |
|
idlsrgmulr.4 |
|- .(x) = ( LSSum ` G ) |
| 5 |
2
|
fvexi |
|- B e. _V |
| 6 |
5 5
|
mpoex |
|- ( i e. B , j e. B |-> ( ( RSpan ` R ) ` ( i .(x) j ) ) ) e. _V |
| 7 |
|
eqid |
|- ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( LSSum ` R ) >. , <. ( .r ` ndx ) , ( i e. B , j e. B |-> ( ( RSpan ` R ) ` ( i .(x) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. B |-> { j e. B | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ B /\ i C_ j ) } >. } ) = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( LSSum ` R ) >. , <. ( .r ` ndx ) , ( i e. B , j e. B |-> ( ( RSpan ` R ) ` ( i .(x) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. B |-> { j e. B | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ B /\ i C_ j ) } >. } ) |
| 8 |
7
|
idlsrgstr |
|- ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( LSSum ` R ) >. , <. ( .r ` ndx ) , ( i e. B , j e. B |-> ( ( RSpan ` R ) ` ( i .(x) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. B |-> { j e. B | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ B /\ i C_ j ) } >. } ) Struct <. 1 , ; 1 0 >. |
| 9 |
|
mulridx |
|- .r = Slot ( .r ` ndx ) |
| 10 |
|
snsstp3 |
|- { <. ( .r ` ndx ) , ( i e. B , j e. B |-> ( ( RSpan ` R ) ` ( i .(x) j ) ) ) >. } C_ { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( LSSum ` R ) >. , <. ( .r ` ndx ) , ( i e. B , j e. B |-> ( ( RSpan ` R ) ` ( i .(x) j ) ) ) >. } |
| 11 |
|
ssun1 |
|- { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( LSSum ` R ) >. , <. ( .r ` ndx ) , ( i e. B , j e. B |-> ( ( RSpan ` R ) ` ( i .(x) j ) ) ) >. } C_ ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( LSSum ` R ) >. , <. ( .r ` ndx ) , ( i e. B , j e. B |-> ( ( RSpan ` R ) ` ( i .(x) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. B |-> { j e. B | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ B /\ i C_ j ) } >. } ) |
| 12 |
10 11
|
sstri |
|- { <. ( .r ` ndx ) , ( i e. B , j e. B |-> ( ( RSpan ` R ) ` ( i .(x) j ) ) ) >. } C_ ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( LSSum ` R ) >. , <. ( .r ` ndx ) , ( i e. B , j e. B |-> ( ( RSpan ` R ) ` ( i .(x) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. B |-> { j e. B | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ B /\ i C_ j ) } >. } ) |
| 13 |
8 9 12
|
strfv |
|- ( ( i e. B , j e. B |-> ( ( RSpan ` R ) ` ( i .(x) j ) ) ) e. _V -> ( i e. B , j e. B |-> ( ( RSpan ` R ) ` ( i .(x) j ) ) ) = ( .r ` ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( LSSum ` R ) >. , <. ( .r ` ndx ) , ( i e. B , j e. B |-> ( ( RSpan ` R ) ` ( i .(x) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. B |-> { j e. B | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ B /\ i C_ j ) } >. } ) ) ) |
| 14 |
6 13
|
ax-mp |
|- ( i e. B , j e. B |-> ( ( RSpan ` R ) ` ( i .(x) j ) ) ) = ( .r ` ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( LSSum ` R ) >. , <. ( .r ` ndx ) , ( i e. B , j e. B |-> ( ( RSpan ` R ) ` ( i .(x) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. B |-> { j e. B | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ B /\ i C_ j ) } >. } ) ) |
| 15 |
|
eqid |
|- ( LSSum ` R ) = ( LSSum ` R ) |
| 16 |
2 15 3 4
|
idlsrgval |
|- ( R e. V -> ( IDLsrg ` R ) = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( LSSum ` R ) >. , <. ( .r ` ndx ) , ( i e. B , j e. B |-> ( ( RSpan ` R ) ` ( i .(x) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. B |-> { j e. B | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ B /\ i C_ j ) } >. } ) ) |
| 17 |
1 16
|
eqtrid |
|- ( R e. V -> S = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( LSSum ` R ) >. , <. ( .r ` ndx ) , ( i e. B , j e. B |-> ( ( RSpan ` R ) ` ( i .(x) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. B |-> { j e. B | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ B /\ i C_ j ) } >. } ) ) |
| 18 |
17
|
fveq2d |
|- ( R e. V -> ( .r ` S ) = ( .r ` ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( LSSum ` R ) >. , <. ( .r ` ndx ) , ( i e. B , j e. B |-> ( ( RSpan ` R ) ` ( i .(x) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. B |-> { j e. B | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ B /\ i C_ j ) } >. } ) ) ) |
| 19 |
14 18
|
eqtr4id |
|- ( R e. V -> ( i e. B , j e. B |-> ( ( RSpan ` R ) ` ( i .(x) j ) ) ) = ( .r ` S ) ) |