Metamath Proof Explorer


Theorem idlsrgmulrssin

Description: In a commutative ring, the product of two ideals is a subset of their intersection. (Contributed by Thierry Arnoux, 17-Jun-2024)

Ref Expression
Hypotheses idlsrgmulrssin.1
|- S = ( IDLsrg ` R )
idlsrgmulrssin.2
|- B = ( LIdeal ` R )
idlsrgmulrssin.3
|- .(x) = ( .r ` S )
idlsrgmulrssin.4
|- ( ph -> R e. CRing )
idlsrgmulrssin.5
|- ( ph -> I e. B )
idlsrgmulrssin.6
|- ( ph -> J e. B )
Assertion idlsrgmulrssin
|- ( ph -> ( I .(x) J ) C_ ( I i^i J ) )

Proof

Step Hyp Ref Expression
1 idlsrgmulrssin.1
 |-  S = ( IDLsrg ` R )
2 idlsrgmulrssin.2
 |-  B = ( LIdeal ` R )
3 idlsrgmulrssin.3
 |-  .(x) = ( .r ` S )
4 idlsrgmulrssin.4
 |-  ( ph -> R e. CRing )
5 idlsrgmulrssin.5
 |-  ( ph -> I e. B )
6 idlsrgmulrssin.6
 |-  ( ph -> J e. B )
7 eqid
 |-  ( .r ` R ) = ( .r ` R )
8 1 2 3 7 4 5 6 idlsrgmulrss1
 |-  ( ph -> ( I .(x) J ) C_ I )
9 4 crngringd
 |-  ( ph -> R e. Ring )
10 1 2 3 7 9 5 6 idlsrgmulrss2
 |-  ( ph -> ( I .(x) J ) C_ J )
11 8 10 ssind
 |-  ( ph -> ( I .(x) J ) C_ ( I i^i J ) )