Description: In a commutative ring, the product of two ideals is a subset of their intersection. (Contributed by Thierry Arnoux, 17-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | idlsrgmulrssin.1 | |- S = ( IDLsrg ` R ) |
|
idlsrgmulrssin.2 | |- B = ( LIdeal ` R ) |
||
idlsrgmulrssin.3 | |- .(x) = ( .r ` S ) |
||
idlsrgmulrssin.4 | |- ( ph -> R e. CRing ) |
||
idlsrgmulrssin.5 | |- ( ph -> I e. B ) |
||
idlsrgmulrssin.6 | |- ( ph -> J e. B ) |
||
Assertion | idlsrgmulrssin | |- ( ph -> ( I .(x) J ) C_ ( I i^i J ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idlsrgmulrssin.1 | |- S = ( IDLsrg ` R ) |
|
2 | idlsrgmulrssin.2 | |- B = ( LIdeal ` R ) |
|
3 | idlsrgmulrssin.3 | |- .(x) = ( .r ` S ) |
|
4 | idlsrgmulrssin.4 | |- ( ph -> R e. CRing ) |
|
5 | idlsrgmulrssin.5 | |- ( ph -> I e. B ) |
|
6 | idlsrgmulrssin.6 | |- ( ph -> J e. B ) |
|
7 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
8 | 1 2 3 7 4 5 6 | idlsrgmulrss1 | |- ( ph -> ( I .(x) J ) C_ I ) |
9 | 4 | crngringd | |- ( ph -> R e. Ring ) |
10 | 1 2 3 7 9 5 6 | idlsrgmulrss2 | |- ( ph -> ( I .(x) J ) C_ J ) |
11 | 8 10 | ssind | |- ( ph -> ( I .(x) J ) C_ ( I i^i J ) ) |