| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idlsrgmnd.1 |  |-  S = ( IDLsrg ` R ) | 
						
							| 2 |  | eqid |  |-  ( LIdeal ` R ) = ( LIdeal ` R ) | 
						
							| 3 | 1 2 | idlsrgbas |  |-  ( R e. Ring -> ( LIdeal ` R ) = ( Base ` S ) ) | 
						
							| 4 |  | eqid |  |-  ( LSSum ` R ) = ( LSSum ` R ) | 
						
							| 5 | 1 4 | idlsrgplusg |  |-  ( R e. Ring -> ( LSSum ` R ) = ( +g ` S ) ) | 
						
							| 6 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 7 |  | eqid |  |-  ( RSpan ` R ) = ( RSpan ` R ) | 
						
							| 8 |  | simp1 |  |-  ( ( R e. Ring /\ i e. ( LIdeal ` R ) /\ j e. ( LIdeal ` R ) ) -> R e. Ring ) | 
						
							| 9 |  | simp2 |  |-  ( ( R e. Ring /\ i e. ( LIdeal ` R ) /\ j e. ( LIdeal ` R ) ) -> i e. ( LIdeal ` R ) ) | 
						
							| 10 |  | simp3 |  |-  ( ( R e. Ring /\ i e. ( LIdeal ` R ) /\ j e. ( LIdeal ` R ) ) -> j e. ( LIdeal ` R ) ) | 
						
							| 11 | 6 4 7 8 9 10 | lsmidl |  |-  ( ( R e. Ring /\ i e. ( LIdeal ` R ) /\ j e. ( LIdeal ` R ) ) -> ( i ( LSSum ` R ) j ) e. ( LIdeal ` R ) ) | 
						
							| 12 | 2 | lidlsubg |  |-  ( ( R e. Ring /\ i e. ( LIdeal ` R ) ) -> i e. ( SubGrp ` R ) ) | 
						
							| 13 | 12 | 3ad2antr1 |  |-  ( ( R e. Ring /\ ( i e. ( LIdeal ` R ) /\ j e. ( LIdeal ` R ) /\ k e. ( LIdeal ` R ) ) ) -> i e. ( SubGrp ` R ) ) | 
						
							| 14 | 2 | lidlsubg |  |-  ( ( R e. Ring /\ j e. ( LIdeal ` R ) ) -> j e. ( SubGrp ` R ) ) | 
						
							| 15 | 14 | 3ad2antr2 |  |-  ( ( R e. Ring /\ ( i e. ( LIdeal ` R ) /\ j e. ( LIdeal ` R ) /\ k e. ( LIdeal ` R ) ) ) -> j e. ( SubGrp ` R ) ) | 
						
							| 16 | 2 | lidlsubg |  |-  ( ( R e. Ring /\ k e. ( LIdeal ` R ) ) -> k e. ( SubGrp ` R ) ) | 
						
							| 17 | 16 | 3ad2antr3 |  |-  ( ( R e. Ring /\ ( i e. ( LIdeal ` R ) /\ j e. ( LIdeal ` R ) /\ k e. ( LIdeal ` R ) ) ) -> k e. ( SubGrp ` R ) ) | 
						
							| 18 | 4 | lsmass |  |-  ( ( i e. ( SubGrp ` R ) /\ j e. ( SubGrp ` R ) /\ k e. ( SubGrp ` R ) ) -> ( ( i ( LSSum ` R ) j ) ( LSSum ` R ) k ) = ( i ( LSSum ` R ) ( j ( LSSum ` R ) k ) ) ) | 
						
							| 19 | 13 15 17 18 | syl3anc |  |-  ( ( R e. Ring /\ ( i e. ( LIdeal ` R ) /\ j e. ( LIdeal ` R ) /\ k e. ( LIdeal ` R ) ) ) -> ( ( i ( LSSum ` R ) j ) ( LSSum ` R ) k ) = ( i ( LSSum ` R ) ( j ( LSSum ` R ) k ) ) ) | 
						
							| 20 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 21 | 2 20 | lidl0 |  |-  ( R e. Ring -> { ( 0g ` R ) } e. ( LIdeal ` R ) ) | 
						
							| 22 | 20 4 | lsm02 |  |-  ( i e. ( SubGrp ` R ) -> ( { ( 0g ` R ) } ( LSSum ` R ) i ) = i ) | 
						
							| 23 | 12 22 | syl |  |-  ( ( R e. Ring /\ i e. ( LIdeal ` R ) ) -> ( { ( 0g ` R ) } ( LSSum ` R ) i ) = i ) | 
						
							| 24 | 20 4 | lsm01 |  |-  ( i e. ( SubGrp ` R ) -> ( i ( LSSum ` R ) { ( 0g ` R ) } ) = i ) | 
						
							| 25 | 12 24 | syl |  |-  ( ( R e. Ring /\ i e. ( LIdeal ` R ) ) -> ( i ( LSSum ` R ) { ( 0g ` R ) } ) = i ) | 
						
							| 26 | 3 5 11 19 21 23 25 | ismndd |  |-  ( R e. Ring -> S e. Mnd ) |