Step |
Hyp |
Ref |
Expression |
1 |
|
idlsrgmnd.1 |
|- S = ( IDLsrg ` R ) |
2 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
3 |
1 2
|
idlsrgbas |
|- ( R e. Ring -> ( LIdeal ` R ) = ( Base ` S ) ) |
4 |
|
eqid |
|- ( LSSum ` R ) = ( LSSum ` R ) |
5 |
1 4
|
idlsrgplusg |
|- ( R e. Ring -> ( LSSum ` R ) = ( +g ` S ) ) |
6 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
7 |
|
eqid |
|- ( RSpan ` R ) = ( RSpan ` R ) |
8 |
|
simp1 |
|- ( ( R e. Ring /\ i e. ( LIdeal ` R ) /\ j e. ( LIdeal ` R ) ) -> R e. Ring ) |
9 |
|
simp2 |
|- ( ( R e. Ring /\ i e. ( LIdeal ` R ) /\ j e. ( LIdeal ` R ) ) -> i e. ( LIdeal ` R ) ) |
10 |
|
simp3 |
|- ( ( R e. Ring /\ i e. ( LIdeal ` R ) /\ j e. ( LIdeal ` R ) ) -> j e. ( LIdeal ` R ) ) |
11 |
6 4 7 8 9 10
|
lsmidl |
|- ( ( R e. Ring /\ i e. ( LIdeal ` R ) /\ j e. ( LIdeal ` R ) ) -> ( i ( LSSum ` R ) j ) e. ( LIdeal ` R ) ) |
12 |
2
|
lidlsubg |
|- ( ( R e. Ring /\ i e. ( LIdeal ` R ) ) -> i e. ( SubGrp ` R ) ) |
13 |
12
|
3ad2antr1 |
|- ( ( R e. Ring /\ ( i e. ( LIdeal ` R ) /\ j e. ( LIdeal ` R ) /\ k e. ( LIdeal ` R ) ) ) -> i e. ( SubGrp ` R ) ) |
14 |
2
|
lidlsubg |
|- ( ( R e. Ring /\ j e. ( LIdeal ` R ) ) -> j e. ( SubGrp ` R ) ) |
15 |
14
|
3ad2antr2 |
|- ( ( R e. Ring /\ ( i e. ( LIdeal ` R ) /\ j e. ( LIdeal ` R ) /\ k e. ( LIdeal ` R ) ) ) -> j e. ( SubGrp ` R ) ) |
16 |
2
|
lidlsubg |
|- ( ( R e. Ring /\ k e. ( LIdeal ` R ) ) -> k e. ( SubGrp ` R ) ) |
17 |
16
|
3ad2antr3 |
|- ( ( R e. Ring /\ ( i e. ( LIdeal ` R ) /\ j e. ( LIdeal ` R ) /\ k e. ( LIdeal ` R ) ) ) -> k e. ( SubGrp ` R ) ) |
18 |
4
|
lsmass |
|- ( ( i e. ( SubGrp ` R ) /\ j e. ( SubGrp ` R ) /\ k e. ( SubGrp ` R ) ) -> ( ( i ( LSSum ` R ) j ) ( LSSum ` R ) k ) = ( i ( LSSum ` R ) ( j ( LSSum ` R ) k ) ) ) |
19 |
13 15 17 18
|
syl3anc |
|- ( ( R e. Ring /\ ( i e. ( LIdeal ` R ) /\ j e. ( LIdeal ` R ) /\ k e. ( LIdeal ` R ) ) ) -> ( ( i ( LSSum ` R ) j ) ( LSSum ` R ) k ) = ( i ( LSSum ` R ) ( j ( LSSum ` R ) k ) ) ) |
20 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
21 |
2 20
|
lidl0 |
|- ( R e. Ring -> { ( 0g ` R ) } e. ( LIdeal ` R ) ) |
22 |
20 4
|
lsm02 |
|- ( i e. ( SubGrp ` R ) -> ( { ( 0g ` R ) } ( LSSum ` R ) i ) = i ) |
23 |
12 22
|
syl |
|- ( ( R e. Ring /\ i e. ( LIdeal ` R ) ) -> ( { ( 0g ` R ) } ( LSSum ` R ) i ) = i ) |
24 |
20 4
|
lsm01 |
|- ( i e. ( SubGrp ` R ) -> ( i ( LSSum ` R ) { ( 0g ` R ) } ) = i ) |
25 |
12 24
|
syl |
|- ( ( R e. Ring /\ i e. ( LIdeal ` R ) ) -> ( i ( LSSum ` R ) { ( 0g ` R ) } ) = i ) |
26 |
3 5 11 19 21 23 25
|
ismndd |
|- ( R e. Ring -> S e. Mnd ) |