| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idlsrgmnd.1 |  |-  S = ( IDLsrg ` R ) | 
						
							| 2 |  | eqid |  |-  ( LIdeal ` R ) = ( LIdeal ` R ) | 
						
							| 3 | 1 2 | idlsrgbas |  |-  ( R e. Ring -> ( LIdeal ` R ) = ( Base ` S ) ) | 
						
							| 4 |  | eqid |  |-  ( LSSum ` R ) = ( LSSum ` R ) | 
						
							| 5 | 1 4 | idlsrgplusg |  |-  ( R e. Ring -> ( LSSum ` R ) = ( +g ` S ) ) | 
						
							| 6 | 1 | idlsrgmnd |  |-  ( R e. Ring -> S e. Mnd ) | 
						
							| 7 |  | ringabl |  |-  ( R e. Ring -> R e. Abel ) | 
						
							| 8 | 7 | 3ad2ant1 |  |-  ( ( R e. Ring /\ i e. ( LIdeal ` R ) /\ j e. ( LIdeal ` R ) ) -> R e. Abel ) | 
						
							| 9 | 2 | lidlsubg |  |-  ( ( R e. Ring /\ i e. ( LIdeal ` R ) ) -> i e. ( SubGrp ` R ) ) | 
						
							| 10 | 9 | 3adant3 |  |-  ( ( R e. Ring /\ i e. ( LIdeal ` R ) /\ j e. ( LIdeal ` R ) ) -> i e. ( SubGrp ` R ) ) | 
						
							| 11 | 2 | lidlsubg |  |-  ( ( R e. Ring /\ j e. ( LIdeal ` R ) ) -> j e. ( SubGrp ` R ) ) | 
						
							| 12 | 11 | 3adant2 |  |-  ( ( R e. Ring /\ i e. ( LIdeal ` R ) /\ j e. ( LIdeal ` R ) ) -> j e. ( SubGrp ` R ) ) | 
						
							| 13 | 4 | lsmcom |  |-  ( ( R e. Abel /\ i e. ( SubGrp ` R ) /\ j e. ( SubGrp ` R ) ) -> ( i ( LSSum ` R ) j ) = ( j ( LSSum ` R ) i ) ) | 
						
							| 14 | 8 10 12 13 | syl3anc |  |-  ( ( R e. Ring /\ i e. ( LIdeal ` R ) /\ j e. ( LIdeal ` R ) ) -> ( i ( LSSum ` R ) j ) = ( j ( LSSum ` R ) i ) ) | 
						
							| 15 | 3 5 6 14 | iscmnd |  |-  ( R e. Ring -> S e. CMnd ) |