Metamath Proof Explorer


Theorem idlsrgcmnd

Description: The ideals of a ring form a commutative monoid. (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypothesis idlsrgmnd.1 No typesetting found for |- S = ( IDLsrg ` R ) with typecode |-
Assertion idlsrgcmnd R Ring S CMnd

Proof

Step Hyp Ref Expression
1 idlsrgmnd.1 Could not format S = ( IDLsrg ` R ) : No typesetting found for |- S = ( IDLsrg ` R ) with typecode |-
2 eqid LIdeal R = LIdeal R
3 1 2 idlsrgbas R Ring LIdeal R = Base S
4 eqid LSSum R = LSSum R
5 1 4 idlsrgplusg R Ring LSSum R = + S
6 1 idlsrgmnd R Ring S Mnd
7 ringabl R Ring R Abel
8 7 3ad2ant1 R Ring i LIdeal R j LIdeal R R Abel
9 2 lidlsubg R Ring i LIdeal R i SubGrp R
10 9 3adant3 R Ring i LIdeal R j LIdeal R i SubGrp R
11 2 lidlsubg R Ring j LIdeal R j SubGrp R
12 11 3adant2 R Ring i LIdeal R j LIdeal R j SubGrp R
13 4 lsmcom R Abel i SubGrp R j SubGrp R i LSSum R j = j LSSum R i
14 8 10 12 13 syl3anc R Ring i LIdeal R j LIdeal R i LSSum R j = j LSSum R i
15 3 5 6 14 iscmnd R Ring S CMnd