Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Algebra
The semiring of ideals of a ring
idlsrgbas
Next ⟩
idlsrgplusg
Metamath Proof Explorer
Ascii
Unicode
Theorem
idlsrgbas
Description:
Base of the ideals of a ring.
(Contributed by
Thierry Arnoux
, 1-Jun-2024)
Ref
Expression
Hypotheses
idlsrgbas.1
⊢
S
=
IDLsrg
⁡
R
idlsrgbas.2
⊢
I
=
LIdeal
⁡
R
Assertion
idlsrgbas
⊢
R
∈
V
→
I
=
Base
S
Proof
Step
Hyp
Ref
Expression
1
idlsrgbas.1
⊢
S
=
IDLsrg
⁡
R
2
idlsrgbas.2
⊢
I
=
LIdeal
⁡
R
3
2
fvexi
⊢
I
∈
V
4
eqid
⊢
Base
ndx
I
+
ndx
LSSum
⁡
R
⋅
ndx
i
∈
I
,
j
∈
I
⟼
RSpan
⁡
R
⁡
i
LSSum
⁡
mulGrp
R
j
∪
TopSet
⁡
ndx
ran
⁡
i
∈
I
⟼
j
∈
I
|
¬
i
⊆
j
≤
ndx
i
j
|
i
j
⊆
I
∧
i
⊆
j
=
Base
ndx
I
+
ndx
LSSum
⁡
R
⋅
ndx
i
∈
I
,
j
∈
I
⟼
RSpan
⁡
R
⁡
i
LSSum
⁡
mulGrp
R
j
∪
TopSet
⁡
ndx
ran
⁡
i
∈
I
⟼
j
∈
I
|
¬
i
⊆
j
≤
ndx
i
j
|
i
j
⊆
I
∧
i
⊆
j
5
4
idlsrgstr
⊢
Base
ndx
I
+
ndx
LSSum
⁡
R
⋅
ndx
i
∈
I
,
j
∈
I
⟼
RSpan
⁡
R
⁡
i
LSSum
⁡
mulGrp
R
j
∪
TopSet
⁡
ndx
ran
⁡
i
∈
I
⟼
j
∈
I
|
¬
i
⊆
j
≤
ndx
i
j
|
i
j
⊆
I
∧
i
⊆
j
Struct
1
10
6
baseid
⊢
Base
=
Slot
Base
ndx
7
snsstp1
⊢
Base
ndx
I
⊆
Base
ndx
I
+
ndx
LSSum
⁡
R
⋅
ndx
i
∈
I
,
j
∈
I
⟼
RSpan
⁡
R
⁡
i
LSSum
⁡
mulGrp
R
j
8
ssun1
⊢
Base
ndx
I
+
ndx
LSSum
⁡
R
⋅
ndx
i
∈
I
,
j
∈
I
⟼
RSpan
⁡
R
⁡
i
LSSum
⁡
mulGrp
R
j
⊆
Base
ndx
I
+
ndx
LSSum
⁡
R
⋅
ndx
i
∈
I
,
j
∈
I
⟼
RSpan
⁡
R
⁡
i
LSSum
⁡
mulGrp
R
j
∪
TopSet
⁡
ndx
ran
⁡
i
∈
I
⟼
j
∈
I
|
¬
i
⊆
j
≤
ndx
i
j
|
i
j
⊆
I
∧
i
⊆
j
9
7
8
sstri
⊢
Base
ndx
I
⊆
Base
ndx
I
+
ndx
LSSum
⁡
R
⋅
ndx
i
∈
I
,
j
∈
I
⟼
RSpan
⁡
R
⁡
i
LSSum
⁡
mulGrp
R
j
∪
TopSet
⁡
ndx
ran
⁡
i
∈
I
⟼
j
∈
I
|
¬
i
⊆
j
≤
ndx
i
j
|
i
j
⊆
I
∧
i
⊆
j
10
5
6
9
strfv
⊢
I
∈
V
→
I
=
Base
Base
ndx
I
+
ndx
LSSum
⁡
R
⋅
ndx
i
∈
I
,
j
∈
I
⟼
RSpan
⁡
R
⁡
i
LSSum
⁡
mulGrp
R
j
∪
TopSet
⁡
ndx
ran
⁡
i
∈
I
⟼
j
∈
I
|
¬
i
⊆
j
≤
ndx
i
j
|
i
j
⊆
I
∧
i
⊆
j
11
3
10
ax-mp
⊢
I
=
Base
Base
ndx
I
+
ndx
LSSum
⁡
R
⋅
ndx
i
∈
I
,
j
∈
I
⟼
RSpan
⁡
R
⁡
i
LSSum
⁡
mulGrp
R
j
∪
TopSet
⁡
ndx
ran
⁡
i
∈
I
⟼
j
∈
I
|
¬
i
⊆
j
≤
ndx
i
j
|
i
j
⊆
I
∧
i
⊆
j
12
eqid
⊢
LSSum
⁡
R
=
LSSum
⁡
R
13
eqid
⊢
mulGrp
R
=
mulGrp
R
14
eqid
⊢
LSSum
⁡
mulGrp
R
=
LSSum
⁡
mulGrp
R
15
2
12
13
14
idlsrgval
⊢
R
∈
V
→
IDLsrg
⁡
R
=
Base
ndx
I
+
ndx
LSSum
⁡
R
⋅
ndx
i
∈
I
,
j
∈
I
⟼
RSpan
⁡
R
⁡
i
LSSum
⁡
mulGrp
R
j
∪
TopSet
⁡
ndx
ran
⁡
i
∈
I
⟼
j
∈
I
|
¬
i
⊆
j
≤
ndx
i
j
|
i
j
⊆
I
∧
i
⊆
j
16
1
15
eqtrid
⊢
R
∈
V
→
S
=
Base
ndx
I
+
ndx
LSSum
⁡
R
⋅
ndx
i
∈
I
,
j
∈
I
⟼
RSpan
⁡
R
⁡
i
LSSum
⁡
mulGrp
R
j
∪
TopSet
⁡
ndx
ran
⁡
i
∈
I
⟼
j
∈
I
|
¬
i
⊆
j
≤
ndx
i
j
|
i
j
⊆
I
∧
i
⊆
j
17
16
fveq2d
⊢
R
∈
V
→
Base
S
=
Base
Base
ndx
I
+
ndx
LSSum
⁡
R
⋅
ndx
i
∈
I
,
j
∈
I
⟼
RSpan
⁡
R
⁡
i
LSSum
⁡
mulGrp
R
j
∪
TopSet
⁡
ndx
ran
⁡
i
∈
I
⟼
j
∈
I
|
¬
i
⊆
j
≤
ndx
i
j
|
i
j
⊆
I
∧
i
⊆
j
18
11
17
eqtr4id
⊢
R
∈
V
→
I
=
Base
S