Metamath Proof Explorer


Theorem idlsrgbas

Description: Base of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypotheses idlsrgbas.1 No typesetting found for |- S = ( IDLsrg ` R ) with typecode |-
idlsrgbas.2 I=LIdealR
Assertion idlsrgbas RVI=BaseS

Proof

Step Hyp Ref Expression
1 idlsrgbas.1 Could not format S = ( IDLsrg ` R ) : No typesetting found for |- S = ( IDLsrg ` R ) with typecode |-
2 idlsrgbas.2 I=LIdealR
3 2 fvexi IV
4 eqid BasendxI+ndxLSSumRndxiI,jIRSpanRiLSSummulGrpRjTopSetndxraniIjI|¬ijndxij|ijIij=BasendxI+ndxLSSumRndxiI,jIRSpanRiLSSummulGrpRjTopSetndxraniIjI|¬ijndxij|ijIij
5 4 idlsrgstr BasendxI+ndxLSSumRndxiI,jIRSpanRiLSSummulGrpRjTopSetndxraniIjI|¬ijndxij|ijIijStruct110
6 baseid Base=SlotBasendx
7 snsstp1 BasendxIBasendxI+ndxLSSumRndxiI,jIRSpanRiLSSummulGrpRj
8 ssun1 BasendxI+ndxLSSumRndxiI,jIRSpanRiLSSummulGrpRjBasendxI+ndxLSSumRndxiI,jIRSpanRiLSSummulGrpRjTopSetndxraniIjI|¬ijndxij|ijIij
9 7 8 sstri BasendxIBasendxI+ndxLSSumRndxiI,jIRSpanRiLSSummulGrpRjTopSetndxraniIjI|¬ijndxij|ijIij
10 5 6 9 strfv IVI=BaseBasendxI+ndxLSSumRndxiI,jIRSpanRiLSSummulGrpRjTopSetndxraniIjI|¬ijndxij|ijIij
11 3 10 ax-mp I=BaseBasendxI+ndxLSSumRndxiI,jIRSpanRiLSSummulGrpRjTopSetndxraniIjI|¬ijndxij|ijIij
12 eqid LSSumR=LSSumR
13 eqid mulGrpR=mulGrpR
14 eqid LSSummulGrpR=LSSummulGrpR
15 2 12 13 14 idlsrgval Could not format ( R e. V -> ( IDLsrg ` R ) = ( { <. ( Base ` ndx ) , I >. , <. ( +g ` ndx ) , ( LSSum ` R ) >. , <. ( .r ` ndx ) , ( i e. I , j e. I |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } >. } ) ) : No typesetting found for |- ( R e. V -> ( IDLsrg ` R ) = ( { <. ( Base ` ndx ) , I >. , <. ( +g ` ndx ) , ( LSSum ` R ) >. , <. ( .r ` ndx ) , ( i e. I , j e. I |-> ( ( RSpan ` R ) ` ( i ( LSSum ` ( mulGrp ` R ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. I |-> { j e. I | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ I /\ i C_ j ) } >. } ) ) with typecode |-
16 1 15 eqtrid RVS=BasendxI+ndxLSSumRndxiI,jIRSpanRiLSSummulGrpRjTopSetndxraniIjI|¬ijndxij|ijIij
17 16 fveq2d RVBaseS=BaseBasendxI+ndxLSSumRndxiI,jIRSpanRiLSSummulGrpRjTopSetndxraniIjI|¬ijndxij|ijIij
18 11 17 eqtr4id RVI=BaseS