| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idlsrgmnd.1 | ⊢ 𝑆  =  ( IDLsrg ‘ 𝑅 ) | 
						
							| 2 |  | eqid | ⊢ ( LIdeal ‘ 𝑅 )  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 3 | 1 2 | idlsrgbas | ⊢ ( 𝑅  ∈  Ring  →  ( LIdeal ‘ 𝑅 )  =  ( Base ‘ 𝑆 ) ) | 
						
							| 4 |  | eqid | ⊢ ( LSSum ‘ 𝑅 )  =  ( LSSum ‘ 𝑅 ) | 
						
							| 5 | 1 4 | idlsrgplusg | ⊢ ( 𝑅  ∈  Ring  →  ( LSSum ‘ 𝑅 )  =  ( +g ‘ 𝑆 ) ) | 
						
							| 6 | 1 | idlsrgmnd | ⊢ ( 𝑅  ∈  Ring  →  𝑆  ∈  Mnd ) | 
						
							| 7 |  | ringabl | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Abel ) | 
						
							| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑖  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  →  𝑅  ∈  Abel ) | 
						
							| 9 | 2 | lidlsubg | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑖  ∈  ( LIdeal ‘ 𝑅 ) )  →  𝑖  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 10 | 9 | 3adant3 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑖  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  →  𝑖  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 11 | 2 | lidlsubg | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  →  𝑗  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 12 | 11 | 3adant2 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑖  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  →  𝑗  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 13 | 4 | lsmcom | ⊢ ( ( 𝑅  ∈  Abel  ∧  𝑖  ∈  ( SubGrp ‘ 𝑅 )  ∧  𝑗  ∈  ( SubGrp ‘ 𝑅 ) )  →  ( 𝑖 ( LSSum ‘ 𝑅 ) 𝑗 )  =  ( 𝑗 ( LSSum ‘ 𝑅 ) 𝑖 ) ) | 
						
							| 14 | 8 10 12 13 | syl3anc | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑖  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  →  ( 𝑖 ( LSSum ‘ 𝑅 ) 𝑗 )  =  ( 𝑗 ( LSSum ‘ 𝑅 ) 𝑖 ) ) | 
						
							| 15 | 3 5 6 14 | iscmnd | ⊢ ( 𝑅  ∈  Ring  →  𝑆  ∈  CMnd ) |