Metamath Proof Explorer


Theorem idlsrgcmnd

Description: The ideals of a ring form a commutative monoid. (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypothesis idlsrgmnd.1 𝑆 = ( IDLsrg ‘ 𝑅 )
Assertion idlsrgcmnd ( 𝑅 ∈ Ring → 𝑆 ∈ CMnd )

Proof

Step Hyp Ref Expression
1 idlsrgmnd.1 𝑆 = ( IDLsrg ‘ 𝑅 )
2 eqid ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 )
3 1 2 idlsrgbas ( 𝑅 ∈ Ring → ( LIdeal ‘ 𝑅 ) = ( Base ‘ 𝑆 ) )
4 eqid ( LSSum ‘ 𝑅 ) = ( LSSum ‘ 𝑅 )
5 1 4 idlsrgplusg ( 𝑅 ∈ Ring → ( LSSum ‘ 𝑅 ) = ( +g𝑆 ) )
6 1 idlsrgmnd ( 𝑅 ∈ Ring → 𝑆 ∈ Mnd )
7 ringabl ( 𝑅 ∈ Ring → 𝑅 ∈ Abel )
8 7 3ad2ant1 ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑅 ∈ Abel )
9 2 lidlsubg ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑖 ∈ ( SubGrp ‘ 𝑅 ) )
10 9 3adant3 ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑖 ∈ ( SubGrp ‘ 𝑅 ) )
11 2 lidlsubg ( ( 𝑅 ∈ Ring ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑗 ∈ ( SubGrp ‘ 𝑅 ) )
12 11 3adant2 ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑗 ∈ ( SubGrp ‘ 𝑅 ) )
13 4 lsmcom ( ( 𝑅 ∈ Abel ∧ 𝑖 ∈ ( SubGrp ‘ 𝑅 ) ∧ 𝑗 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝑖 ( LSSum ‘ 𝑅 ) 𝑗 ) = ( 𝑗 ( LSSum ‘ 𝑅 ) 𝑖 ) )
14 8 10 12 13 syl3anc ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) → ( 𝑖 ( LSSum ‘ 𝑅 ) 𝑗 ) = ( 𝑗 ( LSSum ‘ 𝑅 ) 𝑖 ) )
15 3 5 6 14 iscmnd ( 𝑅 ∈ Ring → 𝑆 ∈ CMnd )