Step |
Hyp |
Ref |
Expression |
1 |
|
idlsrgmnd.1 |
⊢ 𝑆 = ( IDLsrg ‘ 𝑅 ) |
2 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
3 |
1 2
|
idlsrgbas |
⊢ ( 𝑅 ∈ Ring → ( LIdeal ‘ 𝑅 ) = ( Base ‘ 𝑆 ) ) |
4 |
|
eqid |
⊢ ( LSSum ‘ 𝑅 ) = ( LSSum ‘ 𝑅 ) |
5 |
1 4
|
idlsrgplusg |
⊢ ( 𝑅 ∈ Ring → ( LSSum ‘ 𝑅 ) = ( +g ‘ 𝑆 ) ) |
6 |
1
|
idlsrgmnd |
⊢ ( 𝑅 ∈ Ring → 𝑆 ∈ Mnd ) |
7 |
|
ringabl |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Abel ) |
8 |
7
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑅 ∈ Abel ) |
9 |
2
|
lidlsubg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑖 ∈ ( SubGrp ‘ 𝑅 ) ) |
10 |
9
|
3adant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑖 ∈ ( SubGrp ‘ 𝑅 ) ) |
11 |
2
|
lidlsubg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑗 ∈ ( SubGrp ‘ 𝑅 ) ) |
12 |
11
|
3adant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑗 ∈ ( SubGrp ‘ 𝑅 ) ) |
13 |
4
|
lsmcom |
⊢ ( ( 𝑅 ∈ Abel ∧ 𝑖 ∈ ( SubGrp ‘ 𝑅 ) ∧ 𝑗 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝑖 ( LSSum ‘ 𝑅 ) 𝑗 ) = ( 𝑗 ( LSSum ‘ 𝑅 ) 𝑖 ) ) |
14 |
8 10 12 13
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) → ( 𝑖 ( LSSum ‘ 𝑅 ) 𝑗 ) = ( 𝑗 ( LSSum ‘ 𝑅 ) 𝑖 ) ) |
15 |
3 5 6 14
|
iscmnd |
⊢ ( 𝑅 ∈ Ring → 𝑆 ∈ CMnd ) |