| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idlsrgmnd.1 |
⊢ 𝑆 = ( IDLsrg ‘ 𝑅 ) |
| 2 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
| 3 |
1 2
|
idlsrgbas |
⊢ ( 𝑅 ∈ Ring → ( LIdeal ‘ 𝑅 ) = ( Base ‘ 𝑆 ) ) |
| 4 |
|
eqid |
⊢ ( LSSum ‘ 𝑅 ) = ( LSSum ‘ 𝑅 ) |
| 5 |
1 4
|
idlsrgplusg |
⊢ ( 𝑅 ∈ Ring → ( LSSum ‘ 𝑅 ) = ( +g ‘ 𝑆 ) ) |
| 6 |
1
|
idlsrgmnd |
⊢ ( 𝑅 ∈ Ring → 𝑆 ∈ Mnd ) |
| 7 |
|
ringabl |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Abel ) |
| 8 |
7
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑅 ∈ Abel ) |
| 9 |
2
|
lidlsubg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑖 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 10 |
9
|
3adant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑖 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 11 |
2
|
lidlsubg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑗 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 12 |
11
|
3adant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑗 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 13 |
4
|
lsmcom |
⊢ ( ( 𝑅 ∈ Abel ∧ 𝑖 ∈ ( SubGrp ‘ 𝑅 ) ∧ 𝑗 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝑖 ( LSSum ‘ 𝑅 ) 𝑗 ) = ( 𝑗 ( LSSum ‘ 𝑅 ) 𝑖 ) ) |
| 14 |
8 10 12 13
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) → ( 𝑖 ( LSSum ‘ 𝑅 ) 𝑗 ) = ( 𝑗 ( LSSum ‘ 𝑅 ) 𝑖 ) ) |
| 15 |
3 5 6 14
|
iscmnd |
⊢ ( 𝑅 ∈ Ring → 𝑆 ∈ CMnd ) |