| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idlsrgmnd.1 | ⊢ 𝑆  =  ( IDLsrg ‘ 𝑅 ) | 
						
							| 2 |  | eqid | ⊢ ( LIdeal ‘ 𝑅 )  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 3 | 1 2 | idlsrgbas | ⊢ ( 𝑅  ∈  Ring  →  ( LIdeal ‘ 𝑅 )  =  ( Base ‘ 𝑆 ) ) | 
						
							| 4 |  | eqid | ⊢ ( LSSum ‘ 𝑅 )  =  ( LSSum ‘ 𝑅 ) | 
						
							| 5 | 1 4 | idlsrgplusg | ⊢ ( 𝑅  ∈  Ring  →  ( LSSum ‘ 𝑅 )  =  ( +g ‘ 𝑆 ) ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 7 |  | eqid | ⊢ ( RSpan ‘ 𝑅 )  =  ( RSpan ‘ 𝑅 ) | 
						
							| 8 |  | simp1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑖  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  →  𝑅  ∈  Ring ) | 
						
							| 9 |  | simp2 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑖  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  →  𝑖  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 10 |  | simp3 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑖  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  →  𝑗  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 11 | 6 4 7 8 9 10 | lsmidl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑖  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  →  ( 𝑖 ( LSSum ‘ 𝑅 ) 𝑗 )  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 12 | 2 | lidlsubg | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑖  ∈  ( LIdeal ‘ 𝑅 ) )  →  𝑖  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 13 | 12 | 3ad2antr1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) ) )  →  𝑖  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 14 | 2 | lidlsubg | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  →  𝑗  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 15 | 14 | 3ad2antr2 | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) ) )  →  𝑗  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 16 | 2 | lidlsubg | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  →  𝑘  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 17 | 16 | 3ad2antr3 | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) ) )  →  𝑘  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 18 | 4 | lsmass | ⊢ ( ( 𝑖  ∈  ( SubGrp ‘ 𝑅 )  ∧  𝑗  ∈  ( SubGrp ‘ 𝑅 )  ∧  𝑘  ∈  ( SubGrp ‘ 𝑅 ) )  →  ( ( 𝑖 ( LSSum ‘ 𝑅 ) 𝑗 ) ( LSSum ‘ 𝑅 ) 𝑘 )  =  ( 𝑖 ( LSSum ‘ 𝑅 ) ( 𝑗 ( LSSum ‘ 𝑅 ) 𝑘 ) ) ) | 
						
							| 19 | 13 15 17 18 | syl3anc | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) ) )  →  ( ( 𝑖 ( LSSum ‘ 𝑅 ) 𝑗 ) ( LSSum ‘ 𝑅 ) 𝑘 )  =  ( 𝑖 ( LSSum ‘ 𝑅 ) ( 𝑗 ( LSSum ‘ 𝑅 ) 𝑘 ) ) ) | 
						
							| 20 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 21 | 2 20 | lidl0 | ⊢ ( 𝑅  ∈  Ring  →  { ( 0g ‘ 𝑅 ) }  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 22 | 20 4 | lsm02 | ⊢ ( 𝑖  ∈  ( SubGrp ‘ 𝑅 )  →  ( { ( 0g ‘ 𝑅 ) } ( LSSum ‘ 𝑅 ) 𝑖 )  =  𝑖 ) | 
						
							| 23 | 12 22 | syl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑖  ∈  ( LIdeal ‘ 𝑅 ) )  →  ( { ( 0g ‘ 𝑅 ) } ( LSSum ‘ 𝑅 ) 𝑖 )  =  𝑖 ) | 
						
							| 24 | 20 4 | lsm01 | ⊢ ( 𝑖  ∈  ( SubGrp ‘ 𝑅 )  →  ( 𝑖 ( LSSum ‘ 𝑅 ) { ( 0g ‘ 𝑅 ) } )  =  𝑖 ) | 
						
							| 25 | 12 24 | syl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑖  ∈  ( LIdeal ‘ 𝑅 ) )  →  ( 𝑖 ( LSSum ‘ 𝑅 ) { ( 0g ‘ 𝑅 ) } )  =  𝑖 ) | 
						
							| 26 | 3 5 11 19 21 23 25 | ismndd | ⊢ ( 𝑅  ∈  Ring  →  𝑆  ∈  Mnd ) |