Step |
Hyp |
Ref |
Expression |
1 |
|
idlsrgmnd.1 |
⊢ 𝑆 = ( IDLsrg ‘ 𝑅 ) |
2 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
3 |
1 2
|
idlsrgbas |
⊢ ( 𝑅 ∈ Ring → ( LIdeal ‘ 𝑅 ) = ( Base ‘ 𝑆 ) ) |
4 |
|
eqid |
⊢ ( LSSum ‘ 𝑅 ) = ( LSSum ‘ 𝑅 ) |
5 |
1 4
|
idlsrgplusg |
⊢ ( 𝑅 ∈ Ring → ( LSSum ‘ 𝑅 ) = ( +g ‘ 𝑆 ) ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
7 |
|
eqid |
⊢ ( RSpan ‘ 𝑅 ) = ( RSpan ‘ 𝑅 ) |
8 |
|
simp1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
9 |
|
simp2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) |
10 |
|
simp3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) |
11 |
6 4 7 8 9 10
|
lsmidl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) → ( 𝑖 ( LSSum ‘ 𝑅 ) 𝑗 ) ∈ ( LIdeal ‘ 𝑅 ) ) |
12 |
2
|
lidlsubg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑖 ∈ ( SubGrp ‘ 𝑅 ) ) |
13 |
12
|
3ad2antr1 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ) → 𝑖 ∈ ( SubGrp ‘ 𝑅 ) ) |
14 |
2
|
lidlsubg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑗 ∈ ( SubGrp ‘ 𝑅 ) ) |
15 |
14
|
3ad2antr2 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ) → 𝑗 ∈ ( SubGrp ‘ 𝑅 ) ) |
16 |
2
|
lidlsubg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑘 ∈ ( SubGrp ‘ 𝑅 ) ) |
17 |
16
|
3ad2antr3 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ) → 𝑘 ∈ ( SubGrp ‘ 𝑅 ) ) |
18 |
4
|
lsmass |
⊢ ( ( 𝑖 ∈ ( SubGrp ‘ 𝑅 ) ∧ 𝑗 ∈ ( SubGrp ‘ 𝑅 ) ∧ 𝑘 ∈ ( SubGrp ‘ 𝑅 ) ) → ( ( 𝑖 ( LSSum ‘ 𝑅 ) 𝑗 ) ( LSSum ‘ 𝑅 ) 𝑘 ) = ( 𝑖 ( LSSum ‘ 𝑅 ) ( 𝑗 ( LSSum ‘ 𝑅 ) 𝑘 ) ) ) |
19 |
13 15 17 18
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ) → ( ( 𝑖 ( LSSum ‘ 𝑅 ) 𝑗 ) ( LSSum ‘ 𝑅 ) 𝑘 ) = ( 𝑖 ( LSSum ‘ 𝑅 ) ( 𝑗 ( LSSum ‘ 𝑅 ) 𝑘 ) ) ) |
20 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
21 |
2 20
|
lidl0 |
⊢ ( 𝑅 ∈ Ring → { ( 0g ‘ 𝑅 ) } ∈ ( LIdeal ‘ 𝑅 ) ) |
22 |
20 4
|
lsm02 |
⊢ ( 𝑖 ∈ ( SubGrp ‘ 𝑅 ) → ( { ( 0g ‘ 𝑅 ) } ( LSSum ‘ 𝑅 ) 𝑖 ) = 𝑖 ) |
23 |
12 22
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → ( { ( 0g ‘ 𝑅 ) } ( LSSum ‘ 𝑅 ) 𝑖 ) = 𝑖 ) |
24 |
20 4
|
lsm01 |
⊢ ( 𝑖 ∈ ( SubGrp ‘ 𝑅 ) → ( 𝑖 ( LSSum ‘ 𝑅 ) { ( 0g ‘ 𝑅 ) } ) = 𝑖 ) |
25 |
12 24
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → ( 𝑖 ( LSSum ‘ 𝑅 ) { ( 0g ‘ 𝑅 ) } ) = 𝑖 ) |
26 |
3 5 11 19 21 23 25
|
ismndd |
⊢ ( 𝑅 ∈ Ring → 𝑆 ∈ Mnd ) |