Description: The ideal span of an ideal is the ideal itself. (Contributed by Thierry Arnoux, 1-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rspidlid.1 | ⊢ 𝐾 = ( RSpan ‘ 𝑅 ) | |
rspidlid.2 | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | ||
Assertion | rspidlid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( 𝐾 ‘ 𝐼 ) = 𝐼 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspidlid.1 | ⊢ 𝐾 = ( RSpan ‘ 𝑅 ) | |
2 | rspidlid.2 | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
3 | ssid | ⊢ 𝐼 ⊆ 𝐼 | |
4 | 1 2 | rspssp | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ⊆ 𝐼 ) → ( 𝐾 ‘ 𝐼 ) ⊆ 𝐼 ) |
5 | 3 4 | mp3an3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( 𝐾 ‘ 𝐼 ) ⊆ 𝐼 ) |
6 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
7 | 6 2 | lidlss | ⊢ ( 𝐼 ∈ 𝑈 → 𝐼 ⊆ ( Base ‘ 𝑅 ) ) |
8 | 1 6 | rspssid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ⊆ ( Base ‘ 𝑅 ) ) → 𝐼 ⊆ ( 𝐾 ‘ 𝐼 ) ) |
9 | 7 8 | sylan2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 𝐼 ⊆ ( 𝐾 ‘ 𝐼 ) ) |
10 | 5 9 | eqssd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( 𝐾 ‘ 𝐼 ) = 𝐼 ) |