Metamath Proof Explorer


Theorem rspidlid

Description: The ideal span of an ideal is the ideal itself. (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypotheses rspidlid.1 𝐾 = ( RSpan ‘ 𝑅 )
rspidlid.2 𝑈 = ( LIdeal ‘ 𝑅 )
Assertion rspidlid ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → ( 𝐾𝐼 ) = 𝐼 )

Proof

Step Hyp Ref Expression
1 rspidlid.1 𝐾 = ( RSpan ‘ 𝑅 )
2 rspidlid.2 𝑈 = ( LIdeal ‘ 𝑅 )
3 ssid 𝐼𝐼
4 1 2 rspssp ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈𝐼𝐼 ) → ( 𝐾𝐼 ) ⊆ 𝐼 )
5 3 4 mp3an3 ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → ( 𝐾𝐼 ) ⊆ 𝐼 )
6 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
7 6 2 lidlss ( 𝐼𝑈𝐼 ⊆ ( Base ‘ 𝑅 ) )
8 1 6 rspssid ( ( 𝑅 ∈ Ring ∧ 𝐼 ⊆ ( Base ‘ 𝑅 ) ) → 𝐼 ⊆ ( 𝐾𝐼 ) )
9 7 8 sylan2 ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → 𝐼 ⊆ ( 𝐾𝐼 ) )
10 5 9 eqssd ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → ( 𝐾𝐼 ) = 𝐼 )