| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rspidlid.1 |
|- K = ( RSpan ` R ) |
| 2 |
|
rspidlid.2 |
|- U = ( LIdeal ` R ) |
| 3 |
|
ssid |
|- I C_ I |
| 4 |
1 2
|
rspssp |
|- ( ( R e. Ring /\ I e. U /\ I C_ I ) -> ( K ` I ) C_ I ) |
| 5 |
3 4
|
mp3an3 |
|- ( ( R e. Ring /\ I e. U ) -> ( K ` I ) C_ I ) |
| 6 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 7 |
6 2
|
lidlss |
|- ( I e. U -> I C_ ( Base ` R ) ) |
| 8 |
1 6
|
rspssid |
|- ( ( R e. Ring /\ I C_ ( Base ` R ) ) -> I C_ ( K ` I ) ) |
| 9 |
7 8
|
sylan2 |
|- ( ( R e. Ring /\ I e. U ) -> I C_ ( K ` I ) ) |
| 10 |
5 9
|
eqssd |
|- ( ( R e. Ring /\ I e. U ) -> ( K ` I ) = I ) |