Step |
Hyp |
Ref |
Expression |
1 |
|
idlsrg0g.1 |
⊢ 𝑆 = ( IDLsrg ‘ 𝑅 ) |
2 |
|
idlsrg0g.2 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
4 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
5 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
6 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
7 |
6 2
|
lidl0 |
⊢ ( 𝑅 ∈ Ring → { 0 } ∈ ( LIdeal ‘ 𝑅 ) ) |
8 |
1 6
|
idlsrgbas |
⊢ ( 𝑅 ∈ Ring → ( LIdeal ‘ 𝑅 ) = ( Base ‘ 𝑆 ) ) |
9 |
7 8
|
eleqtrd |
⊢ ( 𝑅 ∈ Ring → { 0 } ∈ ( Base ‘ 𝑆 ) ) |
10 |
|
eqid |
⊢ ( LSSum ‘ 𝑅 ) = ( LSSum ‘ 𝑅 ) |
11 |
1 10
|
idlsrgplusg |
⊢ ( 𝑅 ∈ Ring → ( LSSum ‘ 𝑅 ) = ( +g ‘ 𝑆 ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( Base ‘ 𝑆 ) ) → ( LSSum ‘ 𝑅 ) = ( +g ‘ 𝑆 ) ) |
13 |
12
|
oveqd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( Base ‘ 𝑆 ) ) → ( { 0 } ( LSSum ‘ 𝑅 ) 𝑖 ) = ( { 0 } ( +g ‘ 𝑆 ) 𝑖 ) ) |
14 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( Base ‘ 𝑆 ) ) → 𝑖 ∈ ( Base ‘ 𝑆 ) ) |
15 |
8
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( Base ‘ 𝑆 ) ) → ( LIdeal ‘ 𝑅 ) = ( Base ‘ 𝑆 ) ) |
16 |
14 15
|
eleqtrrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( Base ‘ 𝑆 ) ) → 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) |
17 |
6
|
lidlsubg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑖 ∈ ( SubGrp ‘ 𝑅 ) ) |
18 |
16 17
|
syldan |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( Base ‘ 𝑆 ) ) → 𝑖 ∈ ( SubGrp ‘ 𝑅 ) ) |
19 |
2 10
|
lsm02 |
⊢ ( 𝑖 ∈ ( SubGrp ‘ 𝑅 ) → ( { 0 } ( LSSum ‘ 𝑅 ) 𝑖 ) = 𝑖 ) |
20 |
18 19
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( Base ‘ 𝑆 ) ) → ( { 0 } ( LSSum ‘ 𝑅 ) 𝑖 ) = 𝑖 ) |
21 |
13 20
|
eqtr3d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( Base ‘ 𝑆 ) ) → ( { 0 } ( +g ‘ 𝑆 ) 𝑖 ) = 𝑖 ) |
22 |
12
|
oveqd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑖 ( LSSum ‘ 𝑅 ) { 0 } ) = ( 𝑖 ( +g ‘ 𝑆 ) { 0 } ) ) |
23 |
2 10
|
lsm01 |
⊢ ( 𝑖 ∈ ( SubGrp ‘ 𝑅 ) → ( 𝑖 ( LSSum ‘ 𝑅 ) { 0 } ) = 𝑖 ) |
24 |
18 23
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑖 ( LSSum ‘ 𝑅 ) { 0 } ) = 𝑖 ) |
25 |
22 24
|
eqtr3d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑖 ( +g ‘ 𝑆 ) { 0 } ) = 𝑖 ) |
26 |
3 4 5 9 21 25
|
ismgmid2 |
⊢ ( 𝑅 ∈ Ring → { 0 } = ( 0g ‘ 𝑆 ) ) |