Metamath Proof Explorer


Theorem idlsrg0g

Description: The zero ideal is the additive identity of the semiring of ideals. (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypotheses idlsrg0g.1 𝑆 = ( IDLsrg ‘ 𝑅 )
idlsrg0g.2 0 = ( 0g𝑅 )
Assertion idlsrg0g ( 𝑅 ∈ Ring → { 0 } = ( 0g𝑆 ) )

Proof

Step Hyp Ref Expression
1 idlsrg0g.1 𝑆 = ( IDLsrg ‘ 𝑅 )
2 idlsrg0g.2 0 = ( 0g𝑅 )
3 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
4 eqid ( 0g𝑆 ) = ( 0g𝑆 )
5 eqid ( +g𝑆 ) = ( +g𝑆 )
6 eqid ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 )
7 6 2 lidl0 ( 𝑅 ∈ Ring → { 0 } ∈ ( LIdeal ‘ 𝑅 ) )
8 1 6 idlsrgbas ( 𝑅 ∈ Ring → ( LIdeal ‘ 𝑅 ) = ( Base ‘ 𝑆 ) )
9 7 8 eleqtrd ( 𝑅 ∈ Ring → { 0 } ∈ ( Base ‘ 𝑆 ) )
10 eqid ( LSSum ‘ 𝑅 ) = ( LSSum ‘ 𝑅 )
11 1 10 idlsrgplusg ( 𝑅 ∈ Ring → ( LSSum ‘ 𝑅 ) = ( +g𝑆 ) )
12 11 adantr ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( Base ‘ 𝑆 ) ) → ( LSSum ‘ 𝑅 ) = ( +g𝑆 ) )
13 12 oveqd ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( Base ‘ 𝑆 ) ) → ( { 0 } ( LSSum ‘ 𝑅 ) 𝑖 ) = ( { 0 } ( +g𝑆 ) 𝑖 ) )
14 simpr ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( Base ‘ 𝑆 ) ) → 𝑖 ∈ ( Base ‘ 𝑆 ) )
15 8 adantr ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( Base ‘ 𝑆 ) ) → ( LIdeal ‘ 𝑅 ) = ( Base ‘ 𝑆 ) )
16 14 15 eleqtrrd ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( Base ‘ 𝑆 ) ) → 𝑖 ∈ ( LIdeal ‘ 𝑅 ) )
17 6 lidlsubg ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑖 ∈ ( SubGrp ‘ 𝑅 ) )
18 16 17 syldan ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( Base ‘ 𝑆 ) ) → 𝑖 ∈ ( SubGrp ‘ 𝑅 ) )
19 2 10 lsm02 ( 𝑖 ∈ ( SubGrp ‘ 𝑅 ) → ( { 0 } ( LSSum ‘ 𝑅 ) 𝑖 ) = 𝑖 )
20 18 19 syl ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( Base ‘ 𝑆 ) ) → ( { 0 } ( LSSum ‘ 𝑅 ) 𝑖 ) = 𝑖 )
21 13 20 eqtr3d ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( Base ‘ 𝑆 ) ) → ( { 0 } ( +g𝑆 ) 𝑖 ) = 𝑖 )
22 12 oveqd ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑖 ( LSSum ‘ 𝑅 ) { 0 } ) = ( 𝑖 ( +g𝑆 ) { 0 } ) )
23 2 10 lsm01 ( 𝑖 ∈ ( SubGrp ‘ 𝑅 ) → ( 𝑖 ( LSSum ‘ 𝑅 ) { 0 } ) = 𝑖 )
24 18 23 syl ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑖 ( LSSum ‘ 𝑅 ) { 0 } ) = 𝑖 )
25 22 24 eqtr3d ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑖 ( +g𝑆 ) { 0 } ) = 𝑖 )
26 3 4 5 9 21 25 ismgmid2 ( 𝑅 ∈ Ring → { 0 } = ( 0g𝑆 ) )