Step |
Hyp |
Ref |
Expression |
1 |
|
idlsrg0g.1 |
|- S = ( IDLsrg ` R ) |
2 |
|
idlsrg0g.2 |
|- .0. = ( 0g ` R ) |
3 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
4 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
5 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
6 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
7 |
6 2
|
lidl0 |
|- ( R e. Ring -> { .0. } e. ( LIdeal ` R ) ) |
8 |
1 6
|
idlsrgbas |
|- ( R e. Ring -> ( LIdeal ` R ) = ( Base ` S ) ) |
9 |
7 8
|
eleqtrd |
|- ( R e. Ring -> { .0. } e. ( Base ` S ) ) |
10 |
|
eqid |
|- ( LSSum ` R ) = ( LSSum ` R ) |
11 |
1 10
|
idlsrgplusg |
|- ( R e. Ring -> ( LSSum ` R ) = ( +g ` S ) ) |
12 |
11
|
adantr |
|- ( ( R e. Ring /\ i e. ( Base ` S ) ) -> ( LSSum ` R ) = ( +g ` S ) ) |
13 |
12
|
oveqd |
|- ( ( R e. Ring /\ i e. ( Base ` S ) ) -> ( { .0. } ( LSSum ` R ) i ) = ( { .0. } ( +g ` S ) i ) ) |
14 |
|
simpr |
|- ( ( R e. Ring /\ i e. ( Base ` S ) ) -> i e. ( Base ` S ) ) |
15 |
8
|
adantr |
|- ( ( R e. Ring /\ i e. ( Base ` S ) ) -> ( LIdeal ` R ) = ( Base ` S ) ) |
16 |
14 15
|
eleqtrrd |
|- ( ( R e. Ring /\ i e. ( Base ` S ) ) -> i e. ( LIdeal ` R ) ) |
17 |
6
|
lidlsubg |
|- ( ( R e. Ring /\ i e. ( LIdeal ` R ) ) -> i e. ( SubGrp ` R ) ) |
18 |
16 17
|
syldan |
|- ( ( R e. Ring /\ i e. ( Base ` S ) ) -> i e. ( SubGrp ` R ) ) |
19 |
2 10
|
lsm02 |
|- ( i e. ( SubGrp ` R ) -> ( { .0. } ( LSSum ` R ) i ) = i ) |
20 |
18 19
|
syl |
|- ( ( R e. Ring /\ i e. ( Base ` S ) ) -> ( { .0. } ( LSSum ` R ) i ) = i ) |
21 |
13 20
|
eqtr3d |
|- ( ( R e. Ring /\ i e. ( Base ` S ) ) -> ( { .0. } ( +g ` S ) i ) = i ) |
22 |
12
|
oveqd |
|- ( ( R e. Ring /\ i e. ( Base ` S ) ) -> ( i ( LSSum ` R ) { .0. } ) = ( i ( +g ` S ) { .0. } ) ) |
23 |
2 10
|
lsm01 |
|- ( i e. ( SubGrp ` R ) -> ( i ( LSSum ` R ) { .0. } ) = i ) |
24 |
18 23
|
syl |
|- ( ( R e. Ring /\ i e. ( Base ` S ) ) -> ( i ( LSSum ` R ) { .0. } ) = i ) |
25 |
22 24
|
eqtr3d |
|- ( ( R e. Ring /\ i e. ( Base ` S ) ) -> ( i ( +g ` S ) { .0. } ) = i ) |
26 |
3 4 5 9 21 25
|
ismgmid2 |
|- ( R e. Ring -> { .0. } = ( 0g ` S ) ) |