| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rspecbas.1 |  |-  S = ( Spec ` R ) | 
						
							| 2 |  | rspectopn.1 |  |-  I = ( LIdeal ` R ) | 
						
							| 3 |  | rspectopn.2 |  |-  P = ( PrmIdeal ` R ) | 
						
							| 4 |  | rspectopn.3 |  |-  J = ran ( i e. I |-> { j e. P | -. i C_ j } ) | 
						
							| 5 |  | rspecval |  |-  ( R e. Ring -> ( Spec ` R ) = ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) ) | 
						
							| 6 | 3 | oveq2i |  |-  ( ( IDLsrg ` R ) |`s P ) = ( ( IDLsrg ` R ) |`s ( PrmIdeal ` R ) ) | 
						
							| 7 | 5 1 6 | 3eqtr4g |  |-  ( R e. Ring -> S = ( ( IDLsrg ` R ) |`s P ) ) | 
						
							| 8 | 7 | fveq2d |  |-  ( R e. Ring -> ( TopOpen ` S ) = ( TopOpen ` ( ( IDLsrg ` R ) |`s P ) ) ) | 
						
							| 9 |  | eqid |  |-  ( ( IDLsrg ` R ) |`s P ) = ( ( IDLsrg ` R ) |`s P ) | 
						
							| 10 |  | eqid |  |-  ( TopOpen ` ( IDLsrg ` R ) ) = ( TopOpen ` ( IDLsrg ` R ) ) | 
						
							| 11 | 9 10 | resstopn |  |-  ( ( TopOpen ` ( IDLsrg ` R ) ) |`t P ) = ( TopOpen ` ( ( IDLsrg ` R ) |`s P ) ) | 
						
							| 12 | 8 11 | eqtr4di |  |-  ( R e. Ring -> ( TopOpen ` S ) = ( ( TopOpen ` ( IDLsrg ` R ) ) |`t P ) ) | 
						
							| 13 |  | eqid |  |-  ( IDLsrg ` R ) = ( IDLsrg ` R ) | 
						
							| 14 |  | eqid |  |-  ran ( i e. I |-> { j e. I | -. i C_ j } ) = ran ( i e. I |-> { j e. I | -. i C_ j } ) | 
						
							| 15 | 13 2 14 | idlsrgtset |  |-  ( R e. Ring -> ran ( i e. I |-> { j e. I | -. i C_ j } ) = ( TopSet ` ( IDLsrg ` R ) ) ) | 
						
							| 16 | 2 | fvexi |  |-  I e. _V | 
						
							| 17 | 16 | rabex |  |-  { j e. I | -. i C_ j } e. _V | 
						
							| 18 | 17 | a1i |  |-  ( ( R e. Ring /\ i e. I ) -> { j e. I | -. i C_ j } e. _V ) | 
						
							| 19 |  | simp2 |  |-  ( ( ( R e. Ring /\ i e. I ) /\ j e. I /\ -. i C_ j ) -> j e. I ) | 
						
							| 20 | 13 2 | idlsrgbas |  |-  ( R e. Ring -> I = ( Base ` ( IDLsrg ` R ) ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( R e. Ring /\ i e. I ) -> I = ( Base ` ( IDLsrg ` R ) ) ) | 
						
							| 22 | 21 | 3ad2ant1 |  |-  ( ( ( R e. Ring /\ i e. I ) /\ j e. I /\ -. i C_ j ) -> I = ( Base ` ( IDLsrg ` R ) ) ) | 
						
							| 23 | 19 22 | eleqtrd |  |-  ( ( ( R e. Ring /\ i e. I ) /\ j e. I /\ -. i C_ j ) -> j e. ( Base ` ( IDLsrg ` R ) ) ) | 
						
							| 24 | 23 | rabssdv |  |-  ( ( R e. Ring /\ i e. I ) -> { j e. I | -. i C_ j } C_ ( Base ` ( IDLsrg ` R ) ) ) | 
						
							| 25 | 18 24 | elpwd |  |-  ( ( R e. Ring /\ i e. I ) -> { j e. I | -. i C_ j } e. ~P ( Base ` ( IDLsrg ` R ) ) ) | 
						
							| 26 | 25 | ralrimiva |  |-  ( R e. Ring -> A. i e. I { j e. I | -. i C_ j } e. ~P ( Base ` ( IDLsrg ` R ) ) ) | 
						
							| 27 |  | eqid |  |-  ( i e. I |-> { j e. I | -. i C_ j } ) = ( i e. I |-> { j e. I | -. i C_ j } ) | 
						
							| 28 | 27 | rnmptss |  |-  ( A. i e. I { j e. I | -. i C_ j } e. ~P ( Base ` ( IDLsrg ` R ) ) -> ran ( i e. I |-> { j e. I | -. i C_ j } ) C_ ~P ( Base ` ( IDLsrg ` R ) ) ) | 
						
							| 29 | 26 28 | syl |  |-  ( R e. Ring -> ran ( i e. I |-> { j e. I | -. i C_ j } ) C_ ~P ( Base ` ( IDLsrg ` R ) ) ) | 
						
							| 30 | 15 29 | eqsstrrd |  |-  ( R e. Ring -> ( TopSet ` ( IDLsrg ` R ) ) C_ ~P ( Base ` ( IDLsrg ` R ) ) ) | 
						
							| 31 |  | eqid |  |-  ( Base ` ( IDLsrg ` R ) ) = ( Base ` ( IDLsrg ` R ) ) | 
						
							| 32 |  | eqid |  |-  ( TopSet ` ( IDLsrg ` R ) ) = ( TopSet ` ( IDLsrg ` R ) ) | 
						
							| 33 | 31 32 | topnid |  |-  ( ( TopSet ` ( IDLsrg ` R ) ) C_ ~P ( Base ` ( IDLsrg ` R ) ) -> ( TopSet ` ( IDLsrg ` R ) ) = ( TopOpen ` ( IDLsrg ` R ) ) ) | 
						
							| 34 | 30 33 | syl |  |-  ( R e. Ring -> ( TopSet ` ( IDLsrg ` R ) ) = ( TopOpen ` ( IDLsrg ` R ) ) ) | 
						
							| 35 | 15 34 | eqtrd |  |-  ( R e. Ring -> ran ( i e. I |-> { j e. I | -. i C_ j } ) = ( TopOpen ` ( IDLsrg ` R ) ) ) | 
						
							| 36 | 35 | oveq1d |  |-  ( R e. Ring -> ( ran ( i e. I |-> { j e. I | -. i C_ j } ) |`t P ) = ( ( TopOpen ` ( IDLsrg ` R ) ) |`t P ) ) | 
						
							| 37 | 16 | mptex |  |-  ( i e. I |-> { j e. I | -. i C_ j } ) e. _V | 
						
							| 38 | 37 | rnex |  |-  ran ( i e. I |-> { j e. I | -. i C_ j } ) e. _V | 
						
							| 39 | 3 | fvexi |  |-  P e. _V | 
						
							| 40 |  | elrest |  |-  ( ( ran ( i e. I |-> { j e. I | -. i C_ j } ) e. _V /\ P e. _V ) -> ( x e. ( ran ( i e. I |-> { j e. I | -. i C_ j } ) |`t P ) <-> E. y e. ran ( i e. I |-> { j e. I | -. i C_ j } ) x = ( y i^i P ) ) ) | 
						
							| 41 | 38 39 40 | mp2an |  |-  ( x e. ( ran ( i e. I |-> { j e. I | -. i C_ j } ) |`t P ) <-> E. y e. ran ( i e. I |-> { j e. I | -. i C_ j } ) x = ( y i^i P ) ) | 
						
							| 42 | 17 | rgenw |  |-  A. i e. I { j e. I | -. i C_ j } e. _V | 
						
							| 43 |  | ineq1 |  |-  ( y = { j e. I | -. i C_ j } -> ( y i^i P ) = ( { j e. I | -. i C_ j } i^i P ) ) | 
						
							| 44 | 43 | eqeq2d |  |-  ( y = { j e. I | -. i C_ j } -> ( x = ( y i^i P ) <-> x = ( { j e. I | -. i C_ j } i^i P ) ) ) | 
						
							| 45 | 27 44 | rexrnmptw |  |-  ( A. i e. I { j e. I | -. i C_ j } e. _V -> ( E. y e. ran ( i e. I |-> { j e. I | -. i C_ j } ) x = ( y i^i P ) <-> E. i e. I x = ( { j e. I | -. i C_ j } i^i P ) ) ) | 
						
							| 46 | 42 45 | ax-mp |  |-  ( E. y e. ran ( i e. I |-> { j e. I | -. i C_ j } ) x = ( y i^i P ) <-> E. i e. I x = ( { j e. I | -. i C_ j } i^i P ) ) | 
						
							| 47 |  | inrab2 |  |-  ( { j e. I | -. i C_ j } i^i P ) = { j e. ( I i^i P ) | -. i C_ j } | 
						
							| 48 |  | prmidlssidl |  |-  ( R e. Ring -> ( PrmIdeal ` R ) C_ ( LIdeal ` R ) ) | 
						
							| 49 | 48 3 2 | 3sstr4g |  |-  ( R e. Ring -> P C_ I ) | 
						
							| 50 |  | sseqin2 |  |-  ( P C_ I <-> ( I i^i P ) = P ) | 
						
							| 51 | 49 50 | sylib |  |-  ( R e. Ring -> ( I i^i P ) = P ) | 
						
							| 52 | 51 | rabeqdv |  |-  ( R e. Ring -> { j e. ( I i^i P ) | -. i C_ j } = { j e. P | -. i C_ j } ) | 
						
							| 53 | 47 52 | eqtrid |  |-  ( R e. Ring -> ( { j e. I | -. i C_ j } i^i P ) = { j e. P | -. i C_ j } ) | 
						
							| 54 | 53 | eqeq2d |  |-  ( R e. Ring -> ( x = ( { j e. I | -. i C_ j } i^i P ) <-> x = { j e. P | -. i C_ j } ) ) | 
						
							| 55 | 54 | rexbidv |  |-  ( R e. Ring -> ( E. i e. I x = ( { j e. I | -. i C_ j } i^i P ) <-> E. i e. I x = { j e. P | -. i C_ j } ) ) | 
						
							| 56 | 46 55 | bitrid |  |-  ( R e. Ring -> ( E. y e. ran ( i e. I |-> { j e. I | -. i C_ j } ) x = ( y i^i P ) <-> E. i e. I x = { j e. P | -. i C_ j } ) ) | 
						
							| 57 | 41 56 | bitrid |  |-  ( R e. Ring -> ( x e. ( ran ( i e. I |-> { j e. I | -. i C_ j } ) |`t P ) <-> E. i e. I x = { j e. P | -. i C_ j } ) ) | 
						
							| 58 | 4 | eleq2i |  |-  ( x e. J <-> x e. ran ( i e. I |-> { j e. P | -. i C_ j } ) ) | 
						
							| 59 |  | eqid |  |-  ( i e. I |-> { j e. P | -. i C_ j } ) = ( i e. I |-> { j e. P | -. i C_ j } ) | 
						
							| 60 | 39 | rabex |  |-  { j e. P | -. i C_ j } e. _V | 
						
							| 61 | 59 60 | elrnmpti |  |-  ( x e. ran ( i e. I |-> { j e. P | -. i C_ j } ) <-> E. i e. I x = { j e. P | -. i C_ j } ) | 
						
							| 62 | 58 61 | bitri |  |-  ( x e. J <-> E. i e. I x = { j e. P | -. i C_ j } ) | 
						
							| 63 | 57 62 | bitr4di |  |-  ( R e. Ring -> ( x e. ( ran ( i e. I |-> { j e. I | -. i C_ j } ) |`t P ) <-> x e. J ) ) | 
						
							| 64 | 63 | eqrdv |  |-  ( R e. Ring -> ( ran ( i e. I |-> { j e. I | -. i C_ j } ) |`t P ) = J ) | 
						
							| 65 | 12 36 64 | 3eqtr2rd |  |-  ( R e. Ring -> J = ( TopOpen ` S ) ) |