Step |
Hyp |
Ref |
Expression |
1 |
|
rspecbas.1 |
⊢ 𝑆 = ( Spec ‘ 𝑅 ) |
2 |
|
rspectopn.1 |
⊢ 𝐼 = ( LIdeal ‘ 𝑅 ) |
3 |
|
rspectopn.2 |
⊢ 𝑃 = ( PrmIdeal ‘ 𝑅 ) |
4 |
|
rspectopn.3 |
⊢ 𝐽 = ran ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) |
5 |
|
rspecval |
⊢ ( 𝑅 ∈ Ring → ( Spec ‘ 𝑅 ) = ( ( IDLsrg ‘ 𝑅 ) ↾s ( PrmIdeal ‘ 𝑅 ) ) ) |
6 |
3
|
oveq2i |
⊢ ( ( IDLsrg ‘ 𝑅 ) ↾s 𝑃 ) = ( ( IDLsrg ‘ 𝑅 ) ↾s ( PrmIdeal ‘ 𝑅 ) ) |
7 |
5 1 6
|
3eqtr4g |
⊢ ( 𝑅 ∈ Ring → 𝑆 = ( ( IDLsrg ‘ 𝑅 ) ↾s 𝑃 ) ) |
8 |
7
|
fveq2d |
⊢ ( 𝑅 ∈ Ring → ( TopOpen ‘ 𝑆 ) = ( TopOpen ‘ ( ( IDLsrg ‘ 𝑅 ) ↾s 𝑃 ) ) ) |
9 |
|
eqid |
⊢ ( ( IDLsrg ‘ 𝑅 ) ↾s 𝑃 ) = ( ( IDLsrg ‘ 𝑅 ) ↾s 𝑃 ) |
10 |
|
eqid |
⊢ ( TopOpen ‘ ( IDLsrg ‘ 𝑅 ) ) = ( TopOpen ‘ ( IDLsrg ‘ 𝑅 ) ) |
11 |
9 10
|
resstopn |
⊢ ( ( TopOpen ‘ ( IDLsrg ‘ 𝑅 ) ) ↾t 𝑃 ) = ( TopOpen ‘ ( ( IDLsrg ‘ 𝑅 ) ↾s 𝑃 ) ) |
12 |
8 11
|
eqtr4di |
⊢ ( 𝑅 ∈ Ring → ( TopOpen ‘ 𝑆 ) = ( ( TopOpen ‘ ( IDLsrg ‘ 𝑅 ) ) ↾t 𝑃 ) ) |
13 |
|
eqid |
⊢ ( IDLsrg ‘ 𝑅 ) = ( IDLsrg ‘ 𝑅 ) |
14 |
|
eqid |
⊢ ran ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) = ran ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) |
15 |
13 2 14
|
idlsrgtset |
⊢ ( 𝑅 ∈ Ring → ran ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) = ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) ) ) |
16 |
2
|
fvexi |
⊢ 𝐼 ∈ V |
17 |
16
|
rabex |
⊢ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ∈ V |
18 |
17
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ 𝐼 ) → { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ∈ V ) |
19 |
|
simp2 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ∧ ¬ 𝑖 ⊆ 𝑗 ) → 𝑗 ∈ 𝐼 ) |
20 |
13 2
|
idlsrgbas |
⊢ ( 𝑅 ∈ Ring → 𝐼 = ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ 𝐼 ) → 𝐼 = ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) ) |
22 |
21
|
3ad2ant1 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ∧ ¬ 𝑖 ⊆ 𝑗 ) → 𝐼 = ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) ) |
23 |
19 22
|
eleqtrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ∧ ¬ 𝑖 ⊆ 𝑗 ) → 𝑗 ∈ ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) ) |
24 |
23
|
rabssdv |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ 𝐼 ) → { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ⊆ ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) ) |
25 |
18 24
|
elpwd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ 𝐼 ) → { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ∈ 𝒫 ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) ) |
26 |
25
|
ralrimiva |
⊢ ( 𝑅 ∈ Ring → ∀ 𝑖 ∈ 𝐼 { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ∈ 𝒫 ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) ) |
27 |
|
eqid |
⊢ ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) = ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) |
28 |
27
|
rnmptss |
⊢ ( ∀ 𝑖 ∈ 𝐼 { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ∈ 𝒫 ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) → ran ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ⊆ 𝒫 ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) ) |
29 |
26 28
|
syl |
⊢ ( 𝑅 ∈ Ring → ran ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ⊆ 𝒫 ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) ) |
30 |
15 29
|
eqsstrrd |
⊢ ( 𝑅 ∈ Ring → ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) ) ⊆ 𝒫 ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) ) |
31 |
|
eqid |
⊢ ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) = ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) |
32 |
|
eqid |
⊢ ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) ) = ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) ) |
33 |
31 32
|
topnid |
⊢ ( ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) ) ⊆ 𝒫 ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) → ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) ) = ( TopOpen ‘ ( IDLsrg ‘ 𝑅 ) ) ) |
34 |
30 33
|
syl |
⊢ ( 𝑅 ∈ Ring → ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) ) = ( TopOpen ‘ ( IDLsrg ‘ 𝑅 ) ) ) |
35 |
15 34
|
eqtrd |
⊢ ( 𝑅 ∈ Ring → ran ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) = ( TopOpen ‘ ( IDLsrg ‘ 𝑅 ) ) ) |
36 |
35
|
oveq1d |
⊢ ( 𝑅 ∈ Ring → ( ran ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ↾t 𝑃 ) = ( ( TopOpen ‘ ( IDLsrg ‘ 𝑅 ) ) ↾t 𝑃 ) ) |
37 |
16
|
mptex |
⊢ ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ∈ V |
38 |
37
|
rnex |
⊢ ran ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ∈ V |
39 |
3
|
fvexi |
⊢ 𝑃 ∈ V |
40 |
|
elrest |
⊢ ( ( ran ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ∈ V ∧ 𝑃 ∈ V ) → ( 𝑥 ∈ ( ran ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ↾t 𝑃 ) ↔ ∃ 𝑦 ∈ ran ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) 𝑥 = ( 𝑦 ∩ 𝑃 ) ) ) |
41 |
38 39 40
|
mp2an |
⊢ ( 𝑥 ∈ ( ran ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ↾t 𝑃 ) ↔ ∃ 𝑦 ∈ ran ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) 𝑥 = ( 𝑦 ∩ 𝑃 ) ) |
42 |
17
|
rgenw |
⊢ ∀ 𝑖 ∈ 𝐼 { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ∈ V |
43 |
|
ineq1 |
⊢ ( 𝑦 = { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } → ( 𝑦 ∩ 𝑃 ) = ( { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ∩ 𝑃 ) ) |
44 |
43
|
eqeq2d |
⊢ ( 𝑦 = { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } → ( 𝑥 = ( 𝑦 ∩ 𝑃 ) ↔ 𝑥 = ( { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ∩ 𝑃 ) ) ) |
45 |
27 44
|
rexrnmptw |
⊢ ( ∀ 𝑖 ∈ 𝐼 { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ∈ V → ( ∃ 𝑦 ∈ ran ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) 𝑥 = ( 𝑦 ∩ 𝑃 ) ↔ ∃ 𝑖 ∈ 𝐼 𝑥 = ( { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ∩ 𝑃 ) ) ) |
46 |
42 45
|
ax-mp |
⊢ ( ∃ 𝑦 ∈ ran ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) 𝑥 = ( 𝑦 ∩ 𝑃 ) ↔ ∃ 𝑖 ∈ 𝐼 𝑥 = ( { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ∩ 𝑃 ) ) |
47 |
|
inrab2 |
⊢ ( { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ∩ 𝑃 ) = { 𝑗 ∈ ( 𝐼 ∩ 𝑃 ) ∣ ¬ 𝑖 ⊆ 𝑗 } |
48 |
|
prmidlssidl |
⊢ ( 𝑅 ∈ Ring → ( PrmIdeal ‘ 𝑅 ) ⊆ ( LIdeal ‘ 𝑅 ) ) |
49 |
48 3 2
|
3sstr4g |
⊢ ( 𝑅 ∈ Ring → 𝑃 ⊆ 𝐼 ) |
50 |
|
sseqin2 |
⊢ ( 𝑃 ⊆ 𝐼 ↔ ( 𝐼 ∩ 𝑃 ) = 𝑃 ) |
51 |
49 50
|
sylib |
⊢ ( 𝑅 ∈ Ring → ( 𝐼 ∩ 𝑃 ) = 𝑃 ) |
52 |
51
|
rabeqdv |
⊢ ( 𝑅 ∈ Ring → { 𝑗 ∈ ( 𝐼 ∩ 𝑃 ) ∣ ¬ 𝑖 ⊆ 𝑗 } = { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) |
53 |
47 52
|
syl5eq |
⊢ ( 𝑅 ∈ Ring → ( { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ∩ 𝑃 ) = { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) |
54 |
53
|
eqeq2d |
⊢ ( 𝑅 ∈ Ring → ( 𝑥 = ( { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ∩ 𝑃 ) ↔ 𝑥 = { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ) |
55 |
54
|
rexbidv |
⊢ ( 𝑅 ∈ Ring → ( ∃ 𝑖 ∈ 𝐼 𝑥 = ( { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ∩ 𝑃 ) ↔ ∃ 𝑖 ∈ 𝐼 𝑥 = { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ) |
56 |
46 55
|
syl5bb |
⊢ ( 𝑅 ∈ Ring → ( ∃ 𝑦 ∈ ran ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) 𝑥 = ( 𝑦 ∩ 𝑃 ) ↔ ∃ 𝑖 ∈ 𝐼 𝑥 = { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ) |
57 |
41 56
|
syl5bb |
⊢ ( 𝑅 ∈ Ring → ( 𝑥 ∈ ( ran ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ↾t 𝑃 ) ↔ ∃ 𝑖 ∈ 𝐼 𝑥 = { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ) |
58 |
4
|
eleq2i |
⊢ ( 𝑥 ∈ 𝐽 ↔ 𝑥 ∈ ran ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ) |
59 |
|
eqid |
⊢ ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) = ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) |
60 |
39
|
rabex |
⊢ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ∈ V |
61 |
59 60
|
elrnmpti |
⊢ ( 𝑥 ∈ ran ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ↔ ∃ 𝑖 ∈ 𝐼 𝑥 = { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) |
62 |
58 61
|
bitri |
⊢ ( 𝑥 ∈ 𝐽 ↔ ∃ 𝑖 ∈ 𝐼 𝑥 = { 𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗 } ) |
63 |
57 62
|
bitr4di |
⊢ ( 𝑅 ∈ Ring → ( 𝑥 ∈ ( ran ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ↾t 𝑃 ) ↔ 𝑥 ∈ 𝐽 ) ) |
64 |
63
|
eqrdv |
⊢ ( 𝑅 ∈ Ring → ( ran ( 𝑖 ∈ 𝐼 ↦ { 𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗 } ) ↾t 𝑃 ) = 𝐽 ) |
65 |
12 36 64
|
3eqtr2rd |
⊢ ( 𝑅 ∈ Ring → 𝐽 = ( TopOpen ‘ 𝑆 ) ) |