| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rspecbas.1 | ⊢ 𝑆  =  ( Spec ‘ 𝑅 ) | 
						
							| 2 |  | rspectopn.1 | ⊢ 𝐼  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 3 |  | rspectopn.2 | ⊢ 𝑃  =  ( PrmIdeal ‘ 𝑅 ) | 
						
							| 4 |  | rspectopn.3 | ⊢ 𝐽  =  ran  ( 𝑖  ∈  𝐼  ↦  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } ) | 
						
							| 5 |  | rspecval | ⊢ ( 𝑅  ∈  Ring  →  ( Spec ‘ 𝑅 )  =  ( ( IDLsrg ‘ 𝑅 )  ↾s  ( PrmIdeal ‘ 𝑅 ) ) ) | 
						
							| 6 | 3 | oveq2i | ⊢ ( ( IDLsrg ‘ 𝑅 )  ↾s  𝑃 )  =  ( ( IDLsrg ‘ 𝑅 )  ↾s  ( PrmIdeal ‘ 𝑅 ) ) | 
						
							| 7 | 5 1 6 | 3eqtr4g | ⊢ ( 𝑅  ∈  Ring  →  𝑆  =  ( ( IDLsrg ‘ 𝑅 )  ↾s  𝑃 ) ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( 𝑅  ∈  Ring  →  ( TopOpen ‘ 𝑆 )  =  ( TopOpen ‘ ( ( IDLsrg ‘ 𝑅 )  ↾s  𝑃 ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( ( IDLsrg ‘ 𝑅 )  ↾s  𝑃 )  =  ( ( IDLsrg ‘ 𝑅 )  ↾s  𝑃 ) | 
						
							| 10 |  | eqid | ⊢ ( TopOpen ‘ ( IDLsrg ‘ 𝑅 ) )  =  ( TopOpen ‘ ( IDLsrg ‘ 𝑅 ) ) | 
						
							| 11 | 9 10 | resstopn | ⊢ ( ( TopOpen ‘ ( IDLsrg ‘ 𝑅 ) )  ↾t  𝑃 )  =  ( TopOpen ‘ ( ( IDLsrg ‘ 𝑅 )  ↾s  𝑃 ) ) | 
						
							| 12 | 8 11 | eqtr4di | ⊢ ( 𝑅  ∈  Ring  →  ( TopOpen ‘ 𝑆 )  =  ( ( TopOpen ‘ ( IDLsrg ‘ 𝑅 ) )  ↾t  𝑃 ) ) | 
						
							| 13 |  | eqid | ⊢ ( IDLsrg ‘ 𝑅 )  =  ( IDLsrg ‘ 𝑅 ) | 
						
							| 14 |  | eqid | ⊢ ran  ( 𝑖  ∈  𝐼  ↦  { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 } )  =  ran  ( 𝑖  ∈  𝐼  ↦  { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 } ) | 
						
							| 15 | 13 2 14 | idlsrgtset | ⊢ ( 𝑅  ∈  Ring  →  ran  ( 𝑖  ∈  𝐼  ↦  { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 } )  =  ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) ) ) | 
						
							| 16 | 2 | fvexi | ⊢ 𝐼  ∈  V | 
						
							| 17 | 16 | rabex | ⊢ { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 }  ∈  V | 
						
							| 18 | 17 | a1i | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑖  ∈  𝐼 )  →  { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 }  ∈  V ) | 
						
							| 19 |  | simp2 | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑖  ∈  𝐼 )  ∧  𝑗  ∈  𝐼  ∧  ¬  𝑖  ⊆  𝑗 )  →  𝑗  ∈  𝐼 ) | 
						
							| 20 | 13 2 | idlsrgbas | ⊢ ( 𝑅  ∈  Ring  →  𝐼  =  ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑖  ∈  𝐼 )  →  𝐼  =  ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) ) | 
						
							| 22 | 21 | 3ad2ant1 | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑖  ∈  𝐼 )  ∧  𝑗  ∈  𝐼  ∧  ¬  𝑖  ⊆  𝑗 )  →  𝐼  =  ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) ) | 
						
							| 23 | 19 22 | eleqtrd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑖  ∈  𝐼 )  ∧  𝑗  ∈  𝐼  ∧  ¬  𝑖  ⊆  𝑗 )  →  𝑗  ∈  ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) ) | 
						
							| 24 | 23 | rabssdv | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑖  ∈  𝐼 )  →  { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 }  ⊆  ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) ) | 
						
							| 25 | 18 24 | elpwd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑖  ∈  𝐼 )  →  { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 }  ∈  𝒫  ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) ) | 
						
							| 26 | 25 | ralrimiva | ⊢ ( 𝑅  ∈  Ring  →  ∀ 𝑖  ∈  𝐼 { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 }  ∈  𝒫  ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) ) | 
						
							| 27 |  | eqid | ⊢ ( 𝑖  ∈  𝐼  ↦  { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 } )  =  ( 𝑖  ∈  𝐼  ↦  { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 } ) | 
						
							| 28 | 27 | rnmptss | ⊢ ( ∀ 𝑖  ∈  𝐼 { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 }  ∈  𝒫  ( Base ‘ ( IDLsrg ‘ 𝑅 ) )  →  ran  ( 𝑖  ∈  𝐼  ↦  { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 } )  ⊆  𝒫  ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) ) | 
						
							| 29 | 26 28 | syl | ⊢ ( 𝑅  ∈  Ring  →  ran  ( 𝑖  ∈  𝐼  ↦  { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 } )  ⊆  𝒫  ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) ) | 
						
							| 30 | 15 29 | eqsstrrd | ⊢ ( 𝑅  ∈  Ring  →  ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) )  ⊆  𝒫  ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) ) | 
						
							| 31 |  | eqid | ⊢ ( Base ‘ ( IDLsrg ‘ 𝑅 ) )  =  ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) | 
						
							| 32 |  | eqid | ⊢ ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) )  =  ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) ) | 
						
							| 33 | 31 32 | topnid | ⊢ ( ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) )  ⊆  𝒫  ( Base ‘ ( IDLsrg ‘ 𝑅 ) )  →  ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) )  =  ( TopOpen ‘ ( IDLsrg ‘ 𝑅 ) ) ) | 
						
							| 34 | 30 33 | syl | ⊢ ( 𝑅  ∈  Ring  →  ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) )  =  ( TopOpen ‘ ( IDLsrg ‘ 𝑅 ) ) ) | 
						
							| 35 | 15 34 | eqtrd | ⊢ ( 𝑅  ∈  Ring  →  ran  ( 𝑖  ∈  𝐼  ↦  { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 } )  =  ( TopOpen ‘ ( IDLsrg ‘ 𝑅 ) ) ) | 
						
							| 36 | 35 | oveq1d | ⊢ ( 𝑅  ∈  Ring  →  ( ran  ( 𝑖  ∈  𝐼  ↦  { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 } )  ↾t  𝑃 )  =  ( ( TopOpen ‘ ( IDLsrg ‘ 𝑅 ) )  ↾t  𝑃 ) ) | 
						
							| 37 | 16 | mptex | ⊢ ( 𝑖  ∈  𝐼  ↦  { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 } )  ∈  V | 
						
							| 38 | 37 | rnex | ⊢ ran  ( 𝑖  ∈  𝐼  ↦  { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 } )  ∈  V | 
						
							| 39 | 3 | fvexi | ⊢ 𝑃  ∈  V | 
						
							| 40 |  | elrest | ⊢ ( ( ran  ( 𝑖  ∈  𝐼  ↦  { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 } )  ∈  V  ∧  𝑃  ∈  V )  →  ( 𝑥  ∈  ( ran  ( 𝑖  ∈  𝐼  ↦  { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 } )  ↾t  𝑃 )  ↔  ∃ 𝑦  ∈  ran  ( 𝑖  ∈  𝐼  ↦  { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 } ) 𝑥  =  ( 𝑦  ∩  𝑃 ) ) ) | 
						
							| 41 | 38 39 40 | mp2an | ⊢ ( 𝑥  ∈  ( ran  ( 𝑖  ∈  𝐼  ↦  { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 } )  ↾t  𝑃 )  ↔  ∃ 𝑦  ∈  ran  ( 𝑖  ∈  𝐼  ↦  { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 } ) 𝑥  =  ( 𝑦  ∩  𝑃 ) ) | 
						
							| 42 | 17 | rgenw | ⊢ ∀ 𝑖  ∈  𝐼 { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 }  ∈  V | 
						
							| 43 |  | ineq1 | ⊢ ( 𝑦  =  { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 }  →  ( 𝑦  ∩  𝑃 )  =  ( { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 }  ∩  𝑃 ) ) | 
						
							| 44 | 43 | eqeq2d | ⊢ ( 𝑦  =  { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 }  →  ( 𝑥  =  ( 𝑦  ∩  𝑃 )  ↔  𝑥  =  ( { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 }  ∩  𝑃 ) ) ) | 
						
							| 45 | 27 44 | rexrnmptw | ⊢ ( ∀ 𝑖  ∈  𝐼 { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 }  ∈  V  →  ( ∃ 𝑦  ∈  ran  ( 𝑖  ∈  𝐼  ↦  { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 } ) 𝑥  =  ( 𝑦  ∩  𝑃 )  ↔  ∃ 𝑖  ∈  𝐼 𝑥  =  ( { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 }  ∩  𝑃 ) ) ) | 
						
							| 46 | 42 45 | ax-mp | ⊢ ( ∃ 𝑦  ∈  ran  ( 𝑖  ∈  𝐼  ↦  { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 } ) 𝑥  =  ( 𝑦  ∩  𝑃 )  ↔  ∃ 𝑖  ∈  𝐼 𝑥  =  ( { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 }  ∩  𝑃 ) ) | 
						
							| 47 |  | inrab2 | ⊢ ( { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 }  ∩  𝑃 )  =  { 𝑗  ∈  ( 𝐼  ∩  𝑃 )  ∣  ¬  𝑖  ⊆  𝑗 } | 
						
							| 48 |  | prmidlssidl | ⊢ ( 𝑅  ∈  Ring  →  ( PrmIdeal ‘ 𝑅 )  ⊆  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 49 | 48 3 2 | 3sstr4g | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ⊆  𝐼 ) | 
						
							| 50 |  | sseqin2 | ⊢ ( 𝑃  ⊆  𝐼  ↔  ( 𝐼  ∩  𝑃 )  =  𝑃 ) | 
						
							| 51 | 49 50 | sylib | ⊢ ( 𝑅  ∈  Ring  →  ( 𝐼  ∩  𝑃 )  =  𝑃 ) | 
						
							| 52 | 51 | rabeqdv | ⊢ ( 𝑅  ∈  Ring  →  { 𝑗  ∈  ( 𝐼  ∩  𝑃 )  ∣  ¬  𝑖  ⊆  𝑗 }  =  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } ) | 
						
							| 53 | 47 52 | eqtrid | ⊢ ( 𝑅  ∈  Ring  →  ( { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 }  ∩  𝑃 )  =  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } ) | 
						
							| 54 | 53 | eqeq2d | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑥  =  ( { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 }  ∩  𝑃 )  ↔  𝑥  =  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } ) ) | 
						
							| 55 | 54 | rexbidv | ⊢ ( 𝑅  ∈  Ring  →  ( ∃ 𝑖  ∈  𝐼 𝑥  =  ( { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 }  ∩  𝑃 )  ↔  ∃ 𝑖  ∈  𝐼 𝑥  =  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } ) ) | 
						
							| 56 | 46 55 | bitrid | ⊢ ( 𝑅  ∈  Ring  →  ( ∃ 𝑦  ∈  ran  ( 𝑖  ∈  𝐼  ↦  { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 } ) 𝑥  =  ( 𝑦  ∩  𝑃 )  ↔  ∃ 𝑖  ∈  𝐼 𝑥  =  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } ) ) | 
						
							| 57 | 41 56 | bitrid | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑥  ∈  ( ran  ( 𝑖  ∈  𝐼  ↦  { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 } )  ↾t  𝑃 )  ↔  ∃ 𝑖  ∈  𝐼 𝑥  =  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } ) ) | 
						
							| 58 | 4 | eleq2i | ⊢ ( 𝑥  ∈  𝐽  ↔  𝑥  ∈  ran  ( 𝑖  ∈  𝐼  ↦  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } ) ) | 
						
							| 59 |  | eqid | ⊢ ( 𝑖  ∈  𝐼  ↦  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } )  =  ( 𝑖  ∈  𝐼  ↦  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } ) | 
						
							| 60 | 39 | rabex | ⊢ { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 }  ∈  V | 
						
							| 61 | 59 60 | elrnmpti | ⊢ ( 𝑥  ∈  ran  ( 𝑖  ∈  𝐼  ↦  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } )  ↔  ∃ 𝑖  ∈  𝐼 𝑥  =  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } ) | 
						
							| 62 | 58 61 | bitri | ⊢ ( 𝑥  ∈  𝐽  ↔  ∃ 𝑖  ∈  𝐼 𝑥  =  { 𝑗  ∈  𝑃  ∣  ¬  𝑖  ⊆  𝑗 } ) | 
						
							| 63 | 57 62 | bitr4di | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑥  ∈  ( ran  ( 𝑖  ∈  𝐼  ↦  { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 } )  ↾t  𝑃 )  ↔  𝑥  ∈  𝐽 ) ) | 
						
							| 64 | 63 | eqrdv | ⊢ ( 𝑅  ∈  Ring  →  ( ran  ( 𝑖  ∈  𝐼  ↦  { 𝑗  ∈  𝐼  ∣  ¬  𝑖  ⊆  𝑗 } )  ↾t  𝑃 )  =  𝐽 ) | 
						
							| 65 | 12 36 64 | 3eqtr2rd | ⊢ ( 𝑅  ∈  Ring  →  𝐽  =  ( TopOpen ‘ 𝑆 ) ) |