Metamath Proof Explorer


Theorem rspectopn

Description: The topology component of the spectrum of a ring. (Contributed by Thierry Arnoux, 4-Jun-2024)

Ref Expression
Hypotheses rspecbas.1 𝑆 = ( Spec ‘ 𝑅 )
rspectopn.1 𝐼 = ( LIdeal ‘ 𝑅 )
rspectopn.2 𝑃 = ( PrmIdeal ‘ 𝑅 )
rspectopn.3 𝐽 = ran ( 𝑖𝐼 ↦ { 𝑗𝑃 ∣ ¬ 𝑖𝑗 } )
Assertion rspectopn ( 𝑅 ∈ Ring → 𝐽 = ( TopOpen ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 rspecbas.1 𝑆 = ( Spec ‘ 𝑅 )
2 rspectopn.1 𝐼 = ( LIdeal ‘ 𝑅 )
3 rspectopn.2 𝑃 = ( PrmIdeal ‘ 𝑅 )
4 rspectopn.3 𝐽 = ran ( 𝑖𝐼 ↦ { 𝑗𝑃 ∣ ¬ 𝑖𝑗 } )
5 rspecval ( 𝑅 ∈ Ring → ( Spec ‘ 𝑅 ) = ( ( IDLsrg ‘ 𝑅 ) ↾s ( PrmIdeal ‘ 𝑅 ) ) )
6 3 oveq2i ( ( IDLsrg ‘ 𝑅 ) ↾s 𝑃 ) = ( ( IDLsrg ‘ 𝑅 ) ↾s ( PrmIdeal ‘ 𝑅 ) )
7 5 1 6 3eqtr4g ( 𝑅 ∈ Ring → 𝑆 = ( ( IDLsrg ‘ 𝑅 ) ↾s 𝑃 ) )
8 7 fveq2d ( 𝑅 ∈ Ring → ( TopOpen ‘ 𝑆 ) = ( TopOpen ‘ ( ( IDLsrg ‘ 𝑅 ) ↾s 𝑃 ) ) )
9 eqid ( ( IDLsrg ‘ 𝑅 ) ↾s 𝑃 ) = ( ( IDLsrg ‘ 𝑅 ) ↾s 𝑃 )
10 eqid ( TopOpen ‘ ( IDLsrg ‘ 𝑅 ) ) = ( TopOpen ‘ ( IDLsrg ‘ 𝑅 ) )
11 9 10 resstopn ( ( TopOpen ‘ ( IDLsrg ‘ 𝑅 ) ) ↾t 𝑃 ) = ( TopOpen ‘ ( ( IDLsrg ‘ 𝑅 ) ↾s 𝑃 ) )
12 8 11 eqtr4di ( 𝑅 ∈ Ring → ( TopOpen ‘ 𝑆 ) = ( ( TopOpen ‘ ( IDLsrg ‘ 𝑅 ) ) ↾t 𝑃 ) )
13 eqid ( IDLsrg ‘ 𝑅 ) = ( IDLsrg ‘ 𝑅 )
14 eqid ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) = ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } )
15 13 2 14 idlsrgtset ( 𝑅 ∈ Ring → ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) = ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) ) )
16 2 fvexi 𝐼 ∈ V
17 16 rabex { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ∈ V
18 17 a1i ( ( 𝑅 ∈ Ring ∧ 𝑖𝐼 ) → { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ∈ V )
19 simp2 ( ( ( 𝑅 ∈ Ring ∧ 𝑖𝐼 ) ∧ 𝑗𝐼 ∧ ¬ 𝑖𝑗 ) → 𝑗𝐼 )
20 13 2 idlsrgbas ( 𝑅 ∈ Ring → 𝐼 = ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) )
21 20 adantr ( ( 𝑅 ∈ Ring ∧ 𝑖𝐼 ) → 𝐼 = ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) )
22 21 3ad2ant1 ( ( ( 𝑅 ∈ Ring ∧ 𝑖𝐼 ) ∧ 𝑗𝐼 ∧ ¬ 𝑖𝑗 ) → 𝐼 = ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) )
23 19 22 eleqtrd ( ( ( 𝑅 ∈ Ring ∧ 𝑖𝐼 ) ∧ 𝑗𝐼 ∧ ¬ 𝑖𝑗 ) → 𝑗 ∈ ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) )
24 23 rabssdv ( ( 𝑅 ∈ Ring ∧ 𝑖𝐼 ) → { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ⊆ ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) )
25 18 24 elpwd ( ( 𝑅 ∈ Ring ∧ 𝑖𝐼 ) → { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ∈ 𝒫 ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) )
26 25 ralrimiva ( 𝑅 ∈ Ring → ∀ 𝑖𝐼 { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ∈ 𝒫 ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) )
27 eqid ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) = ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } )
28 27 rnmptss ( ∀ 𝑖𝐼 { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ∈ 𝒫 ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) → ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ⊆ 𝒫 ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) )
29 26 28 syl ( 𝑅 ∈ Ring → ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ⊆ 𝒫 ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) )
30 15 29 eqsstrrd ( 𝑅 ∈ Ring → ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) ) ⊆ 𝒫 ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) )
31 eqid ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) = ( Base ‘ ( IDLsrg ‘ 𝑅 ) )
32 eqid ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) ) = ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) )
33 31 32 topnid ( ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) ) ⊆ 𝒫 ( Base ‘ ( IDLsrg ‘ 𝑅 ) ) → ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) ) = ( TopOpen ‘ ( IDLsrg ‘ 𝑅 ) ) )
34 30 33 syl ( 𝑅 ∈ Ring → ( TopSet ‘ ( IDLsrg ‘ 𝑅 ) ) = ( TopOpen ‘ ( IDLsrg ‘ 𝑅 ) ) )
35 15 34 eqtrd ( 𝑅 ∈ Ring → ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) = ( TopOpen ‘ ( IDLsrg ‘ 𝑅 ) ) )
36 35 oveq1d ( 𝑅 ∈ Ring → ( ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ↾t 𝑃 ) = ( ( TopOpen ‘ ( IDLsrg ‘ 𝑅 ) ) ↾t 𝑃 ) )
37 16 mptex ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ∈ V
38 37 rnex ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ∈ V
39 3 fvexi 𝑃 ∈ V
40 elrest ( ( ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ∈ V ∧ 𝑃 ∈ V ) → ( 𝑥 ∈ ( ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ↾t 𝑃 ) ↔ ∃ 𝑦 ∈ ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) 𝑥 = ( 𝑦𝑃 ) ) )
41 38 39 40 mp2an ( 𝑥 ∈ ( ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ↾t 𝑃 ) ↔ ∃ 𝑦 ∈ ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) 𝑥 = ( 𝑦𝑃 ) )
42 17 rgenw 𝑖𝐼 { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ∈ V
43 ineq1 ( 𝑦 = { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } → ( 𝑦𝑃 ) = ( { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ∩ 𝑃 ) )
44 43 eqeq2d ( 𝑦 = { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } → ( 𝑥 = ( 𝑦𝑃 ) ↔ 𝑥 = ( { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ∩ 𝑃 ) ) )
45 27 44 rexrnmptw ( ∀ 𝑖𝐼 { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ∈ V → ( ∃ 𝑦 ∈ ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) 𝑥 = ( 𝑦𝑃 ) ↔ ∃ 𝑖𝐼 𝑥 = ( { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ∩ 𝑃 ) ) )
46 42 45 ax-mp ( ∃ 𝑦 ∈ ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) 𝑥 = ( 𝑦𝑃 ) ↔ ∃ 𝑖𝐼 𝑥 = ( { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ∩ 𝑃 ) )
47 inrab2 ( { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ∩ 𝑃 ) = { 𝑗 ∈ ( 𝐼𝑃 ) ∣ ¬ 𝑖𝑗 }
48 prmidlssidl ( 𝑅 ∈ Ring → ( PrmIdeal ‘ 𝑅 ) ⊆ ( LIdeal ‘ 𝑅 ) )
49 48 3 2 3sstr4g ( 𝑅 ∈ Ring → 𝑃𝐼 )
50 sseqin2 ( 𝑃𝐼 ↔ ( 𝐼𝑃 ) = 𝑃 )
51 49 50 sylib ( 𝑅 ∈ Ring → ( 𝐼𝑃 ) = 𝑃 )
52 51 rabeqdv ( 𝑅 ∈ Ring → { 𝑗 ∈ ( 𝐼𝑃 ) ∣ ¬ 𝑖𝑗 } = { 𝑗𝑃 ∣ ¬ 𝑖𝑗 } )
53 47 52 syl5eq ( 𝑅 ∈ Ring → ( { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ∩ 𝑃 ) = { 𝑗𝑃 ∣ ¬ 𝑖𝑗 } )
54 53 eqeq2d ( 𝑅 ∈ Ring → ( 𝑥 = ( { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ∩ 𝑃 ) ↔ 𝑥 = { 𝑗𝑃 ∣ ¬ 𝑖𝑗 } ) )
55 54 rexbidv ( 𝑅 ∈ Ring → ( ∃ 𝑖𝐼 𝑥 = ( { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ∩ 𝑃 ) ↔ ∃ 𝑖𝐼 𝑥 = { 𝑗𝑃 ∣ ¬ 𝑖𝑗 } ) )
56 46 55 syl5bb ( 𝑅 ∈ Ring → ( ∃ 𝑦 ∈ ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) 𝑥 = ( 𝑦𝑃 ) ↔ ∃ 𝑖𝐼 𝑥 = { 𝑗𝑃 ∣ ¬ 𝑖𝑗 } ) )
57 41 56 syl5bb ( 𝑅 ∈ Ring → ( 𝑥 ∈ ( ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ↾t 𝑃 ) ↔ ∃ 𝑖𝐼 𝑥 = { 𝑗𝑃 ∣ ¬ 𝑖𝑗 } ) )
58 4 eleq2i ( 𝑥𝐽𝑥 ∈ ran ( 𝑖𝐼 ↦ { 𝑗𝑃 ∣ ¬ 𝑖𝑗 } ) )
59 eqid ( 𝑖𝐼 ↦ { 𝑗𝑃 ∣ ¬ 𝑖𝑗 } ) = ( 𝑖𝐼 ↦ { 𝑗𝑃 ∣ ¬ 𝑖𝑗 } )
60 39 rabex { 𝑗𝑃 ∣ ¬ 𝑖𝑗 } ∈ V
61 59 60 elrnmpti ( 𝑥 ∈ ran ( 𝑖𝐼 ↦ { 𝑗𝑃 ∣ ¬ 𝑖𝑗 } ) ↔ ∃ 𝑖𝐼 𝑥 = { 𝑗𝑃 ∣ ¬ 𝑖𝑗 } )
62 58 61 bitri ( 𝑥𝐽 ↔ ∃ 𝑖𝐼 𝑥 = { 𝑗𝑃 ∣ ¬ 𝑖𝑗 } )
63 57 62 bitr4di ( 𝑅 ∈ Ring → ( 𝑥 ∈ ( ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ↾t 𝑃 ) ↔ 𝑥𝐽 ) )
64 63 eqrdv ( 𝑅 ∈ Ring → ( ran ( 𝑖𝐼 ↦ { 𝑗𝐼 ∣ ¬ 𝑖𝑗 } ) ↾t 𝑃 ) = 𝐽 )
65 12 36 64 3eqtr2rd ( 𝑅 ∈ Ring → 𝐽 = ( TopOpen ‘ 𝑆 ) )