| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zarclsx.1 | ⊢ 𝑉  =  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } ) | 
						
							| 2 |  | zarcls0.1 | ⊢ 𝑃  =  ( PrmIdeal ‘ 𝑅 ) | 
						
							| 3 |  | zarcls0.2 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 | 1 | a1i | ⊢ ( 𝑅  ∈  Ring  →  𝑉  =  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } ) ) | 
						
							| 5 |  | simplr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑖  =  {  0  } )  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  𝑖  =  {  0  } ) | 
						
							| 6 |  | simpll | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑖  =  {  0  } )  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  𝑅  ∈  Ring ) | 
						
							| 7 |  | prmidlidl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  𝑗  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 8 | 6 7 | sylancom | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑖  =  {  0  } )  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  𝑗  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 9 |  | eqid | ⊢ ( LIdeal ‘ 𝑅 )  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 10 | 9 3 | lidl0cl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  →   0   ∈  𝑗 ) | 
						
							| 11 | 6 8 10 | syl2anc | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑖  =  {  0  } )  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  →   0   ∈  𝑗 ) | 
						
							| 12 | 11 | snssd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑖  =  {  0  } )  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  {  0  }  ⊆  𝑗 ) | 
						
							| 13 | 5 12 | eqsstrd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑖  =  {  0  } )  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  𝑖  ⊆  𝑗 ) | 
						
							| 14 | 13 | ralrimiva | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑖  =  {  0  } )  →  ∀ 𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) 𝑖  ⊆  𝑗 ) | 
						
							| 15 |  | rabid2 | ⊢ ( ( PrmIdeal ‘ 𝑅 )  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 }  ↔  ∀ 𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) 𝑖  ⊆  𝑗 ) | 
						
							| 16 | 14 15 | sylibr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑖  =  {  0  } )  →  ( PrmIdeal ‘ 𝑅 )  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } ) | 
						
							| 17 | 2 16 | eqtr2id | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑖  =  {  0  } )  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 }  =  𝑃 ) | 
						
							| 18 | 9 3 | lidl0 | ⊢ ( 𝑅  ∈  Ring  →  {  0  }  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 19 | 2 | fvexi | ⊢ 𝑃  ∈  V | 
						
							| 20 | 19 | a1i | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  V ) | 
						
							| 21 | 4 17 18 20 | fvmptd | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑉 ‘ {  0  } )  =  𝑃 ) |