| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zarclsx.1 | ⊢ 𝑉  =  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } ) | 
						
							| 2 |  | zarcls1.1 | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 3 |  | simplr | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝐼  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  ( 𝑉 ‘ 𝐼 )  =  ∅ )  ∧  𝐼  ≠  𝐵 )  →  ( 𝑉 ‘ 𝐼 )  =  ∅ ) | 
						
							| 4 |  | sseq2 | ⊢ ( 𝑗  =  𝑚  →  ( 𝐼  ⊆  𝑗  ↔  𝐼  ⊆  𝑚 ) ) | 
						
							| 5 |  | eqid | ⊢ ( LSSum ‘ ( mulGrp ‘ 𝑅 ) )  =  ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 6 | 5 | mxidlprm | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑚  ∈  ( MaxIdeal ‘ 𝑅 ) )  →  𝑚  ∈  ( PrmIdeal ‘ 𝑅 ) ) | 
						
							| 7 | 6 | ad5ant14 | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝐼  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝐼  ≠  𝐵 )  ∧  𝑚  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  𝐼  ⊆  𝑚 )  →  𝑚  ∈  ( PrmIdeal ‘ 𝑅 ) ) | 
						
							| 8 |  | simpr | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝐼  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝐼  ≠  𝐵 )  ∧  𝑚  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  𝐼  ⊆  𝑚 )  →  𝐼  ⊆  𝑚 ) | 
						
							| 9 | 4 7 8 | elrabd | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝐼  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝐼  ≠  𝐵 )  ∧  𝑚  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  𝐼  ⊆  𝑚 )  →  𝑚  ∈  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝐼  ⊆  𝑗 } ) | 
						
							| 10 | 1 | a1i | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝐼  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝐼  ≠  𝐵 )  ∧  𝑚  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  𝐼  ⊆  𝑚 )  →  𝑉  =  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } ) ) | 
						
							| 11 |  | sseq1 | ⊢ ( 𝑖  =  𝐼  →  ( 𝑖  ⊆  𝑗  ↔  𝐼  ⊆  𝑗 ) ) | 
						
							| 12 | 11 | rabbidv | ⊢ ( 𝑖  =  𝐼  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 }  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝐼  ⊆  𝑗 } ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝐼  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝐼  ≠  𝐵 )  ∧  𝑚  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  𝐼  ⊆  𝑚 )  ∧  𝑖  =  𝐼 )  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 }  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝐼  ⊆  𝑗 } ) | 
						
							| 14 |  | simp-4r | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝐼  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝐼  ≠  𝐵 )  ∧  𝑚  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  𝐼  ⊆  𝑚 )  →  𝐼  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 15 |  | fvex | ⊢ ( PrmIdeal ‘ 𝑅 )  ∈  V | 
						
							| 16 | 15 | rabex | ⊢ { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝐼  ⊆  𝑗 }  ∈  V | 
						
							| 17 | 16 | a1i | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝐼  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝐼  ≠  𝐵 )  ∧  𝑚  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  𝐼  ⊆  𝑚 )  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝐼  ⊆  𝑗 }  ∈  V ) | 
						
							| 18 | 10 13 14 17 | fvmptd | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝐼  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝐼  ≠  𝐵 )  ∧  𝑚  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  𝐼  ⊆  𝑚 )  →  ( 𝑉 ‘ 𝐼 )  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝐼  ⊆  𝑗 } ) | 
						
							| 19 | 9 18 | eleqtrrd | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝐼  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝐼  ≠  𝐵 )  ∧  𝑚  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  𝐼  ⊆  𝑚 )  →  𝑚  ∈  ( 𝑉 ‘ 𝐼 ) ) | 
						
							| 20 |  | ne0i | ⊢ ( 𝑚  ∈  ( 𝑉 ‘ 𝐼 )  →  ( 𝑉 ‘ 𝐼 )  ≠  ∅ ) | 
						
							| 21 | 19 20 | syl | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝐼  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝐼  ≠  𝐵 )  ∧  𝑚  ∈  ( MaxIdeal ‘ 𝑅 ) )  ∧  𝐼  ⊆  𝑚 )  →  ( 𝑉 ‘ 𝐼 )  ≠  ∅ ) | 
						
							| 22 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 23 | 2 | ssmxidl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝐼  ≠  𝐵 )  →  ∃ 𝑚  ∈  ( MaxIdeal ‘ 𝑅 ) 𝐼  ⊆  𝑚 ) | 
						
							| 24 | 23 | 3expa | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝐼  ≠  𝐵 )  →  ∃ 𝑚  ∈  ( MaxIdeal ‘ 𝑅 ) 𝐼  ⊆  𝑚 ) | 
						
							| 25 | 22 24 | sylanl1 | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝐼  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝐼  ≠  𝐵 )  →  ∃ 𝑚  ∈  ( MaxIdeal ‘ 𝑅 ) 𝐼  ⊆  𝑚 ) | 
						
							| 26 | 21 25 | r19.29a | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝐼  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝐼  ≠  𝐵 )  →  ( 𝑉 ‘ 𝐼 )  ≠  ∅ ) | 
						
							| 27 | 26 | adantlr | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝐼  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  ( 𝑉 ‘ 𝐼 )  =  ∅ )  ∧  𝐼  ≠  𝐵 )  →  ( 𝑉 ‘ 𝐼 )  ≠  ∅ ) | 
						
							| 28 | 27 | neneqd | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝐼  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  ( 𝑉 ‘ 𝐼 )  =  ∅ )  ∧  𝐼  ≠  𝐵 )  →  ¬  ( 𝑉 ‘ 𝐼 )  =  ∅ ) | 
						
							| 29 | 3 28 | pm2.65da | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝐼  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  ( 𝑉 ‘ 𝐼 )  =  ∅ )  →  ¬  𝐼  ≠  𝐵 ) | 
						
							| 30 |  | nne | ⊢ ( ¬  𝐼  ≠  𝐵  ↔  𝐼  =  𝐵 ) | 
						
							| 31 | 29 30 | sylib | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝐼  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  ( 𝑉 ‘ 𝐼 )  =  ∅ )  →  𝐼  =  𝐵 ) | 
						
							| 32 |  | fveq2 | ⊢ ( 𝐼  =  𝐵  →  ( 𝑉 ‘ 𝐼 )  =  ( 𝑉 ‘ 𝐵 ) ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝐼  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝐼  =  𝐵 )  →  ( 𝑉 ‘ 𝐼 )  =  ( 𝑉 ‘ 𝐵 ) ) | 
						
							| 34 | 1 | a1i | ⊢ ( 𝑅  ∈  Ring  →  𝑉  =  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } ) ) | 
						
							| 35 |  | sseq1 | ⊢ ( 𝑖  =  𝐵  →  ( 𝑖  ⊆  𝑗  ↔  𝐵  ⊆  𝑗 ) ) | 
						
							| 36 | 35 | adantl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑖  =  𝐵 )  →  ( 𝑖  ⊆  𝑗  ↔  𝐵  ⊆  𝑗 ) ) | 
						
							| 37 | 36 | rabbidv | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑖  =  𝐵 )  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 }  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝐵  ⊆  𝑗 } ) | 
						
							| 38 |  | eqid | ⊢ ( LIdeal ‘ 𝑅 )  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 39 | 38 2 | lidl1 | ⊢ ( 𝑅  ∈  Ring  →  𝐵  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 40 | 15 | rabex | ⊢ { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝐵  ⊆  𝑗 }  ∈  V | 
						
							| 41 | 40 | a1i | ⊢ ( 𝑅  ∈  Ring  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝐵  ⊆  𝑗 }  ∈  V ) | 
						
							| 42 | 34 37 39 41 | fvmptd | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑉 ‘ 𝐵 )  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝐵  ⊆  𝑗 } ) | 
						
							| 43 |  | prmidlidl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  𝑗  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 44 | 2 38 | lidlss | ⊢ ( 𝑗  ∈  ( LIdeal ‘ 𝑅 )  →  𝑗  ⊆  𝐵 ) | 
						
							| 45 | 43 44 | syl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  𝑗  ⊆  𝐵 ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝐵  ⊆  𝑗 )  →  𝑗  ⊆  𝐵 ) | 
						
							| 47 |  | simpr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝐵  ⊆  𝑗 )  →  𝐵  ⊆  𝑗 ) | 
						
							| 48 | 46 47 | eqssd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝐵  ⊆  𝑗 )  →  𝑗  =  𝐵 ) | 
						
							| 49 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 50 | 2 49 | prmidlnr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  𝑗  ≠  𝐵 ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝐵  ⊆  𝑗 )  →  𝑗  ≠  𝐵 ) | 
						
							| 52 | 51 | neneqd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝐵  ⊆  𝑗 )  →  ¬  𝑗  =  𝐵 ) | 
						
							| 53 | 48 52 | pm2.65da | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  ¬  𝐵  ⊆  𝑗 ) | 
						
							| 54 | 53 | ralrimiva | ⊢ ( 𝑅  ∈  Ring  →  ∀ 𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) ¬  𝐵  ⊆  𝑗 ) | 
						
							| 55 |  | rabeq0 | ⊢ ( { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝐵  ⊆  𝑗 }  =  ∅  ↔  ∀ 𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) ¬  𝐵  ⊆  𝑗 ) | 
						
							| 56 | 54 55 | sylibr | ⊢ ( 𝑅  ∈  Ring  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝐵  ⊆  𝑗 }  =  ∅ ) | 
						
							| 57 | 42 56 | eqtrd | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑉 ‘ 𝐵 )  =  ∅ ) | 
						
							| 58 | 22 57 | syl | ⊢ ( 𝑅  ∈  CRing  →  ( 𝑉 ‘ 𝐵 )  =  ∅ ) | 
						
							| 59 | 58 | ad2antrr | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝐼  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝐼  =  𝐵 )  →  ( 𝑉 ‘ 𝐵 )  =  ∅ ) | 
						
							| 60 | 33 59 | eqtrd | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝐼  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝐼  =  𝐵 )  →  ( 𝑉 ‘ 𝐼 )  =  ∅ ) | 
						
							| 61 | 31 60 | impbida | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝐼  ∈  ( LIdeal ‘ 𝑅 ) )  →  ( ( 𝑉 ‘ 𝐼 )  =  ∅  ↔  𝐼  =  𝐵 ) ) |