| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zarclsx.1 | ⊢ 𝑉  =  ( 𝑖  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } ) | 
						
							| 2 |  | simpllr | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑋  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 } )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑌  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } )  →  𝑋  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 } ) | 
						
							| 3 |  | simpr | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑋  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 } )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑌  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } )  →  𝑌  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } ) | 
						
							| 4 | 2 3 | uneq12d | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑋  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 } )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑌  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } )  →  ( 𝑋  ∪  𝑌 )  =  ( { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 }  ∪  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } ) ) | 
						
							| 5 |  | unrab | ⊢ ( { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 }  ∪  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } )  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ( 𝑙  ⊆  𝑗  ∨  𝑘  ⊆  𝑗 ) } | 
						
							| 6 |  | eqid | ⊢ ( IDLsrg ‘ 𝑅 )  =  ( IDLsrg ‘ 𝑅 ) | 
						
							| 7 |  | eqid | ⊢ ( LIdeal ‘ 𝑅 )  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 8 |  | eqid | ⊢ ( .r ‘ ( IDLsrg ‘ 𝑅 ) )  =  ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) | 
						
							| 9 |  | simpll | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  →  𝑅  ∈  CRing ) | 
						
							| 10 | 9 | crngringd | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  →  𝑅  ∈  Ring ) | 
						
							| 11 |  | simplr | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  →  𝑙  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  →  𝑘  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 13 | 6 7 8 10 11 12 | idlsrgmulrcl | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  →  ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 )  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 14 |  | sseq1 | ⊢ ( 𝑖  =  ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 )  →  ( 𝑖  ⊆  𝑗  ↔  ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 )  ⊆  𝑗 ) ) | 
						
							| 15 | 14 | rabbidv | ⊢ ( 𝑖  =  ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 )  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 }  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 )  ⊆  𝑗 } ) | 
						
							| 16 | 15 | eqeq2d | ⊢ ( 𝑖  =  ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 )  →  ( { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ( 𝑙  ⊆  𝑗  ∨  𝑘  ⊆  𝑗 ) }  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 }  ↔  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ( 𝑙  ⊆  𝑗  ∨  𝑘  ⊆  𝑗 ) }  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 )  ⊆  𝑗 } ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑖  =  ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) )  →  ( { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ( 𝑙  ⊆  𝑗  ∨  𝑘  ⊆  𝑗 ) }  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 }  ↔  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ( 𝑙  ⊆  𝑗  ∨  𝑘  ⊆  𝑗 ) }  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 )  ⊆  𝑗 } ) ) | 
						
							| 18 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 19 | 9 | ad2antrr | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑙  ⊆  𝑗 )  →  𝑅  ∈  CRing ) | 
						
							| 20 | 11 | ad2antrr | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑙  ⊆  𝑗 )  →  𝑙  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 21 | 12 | ad2antrr | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑙  ⊆  𝑗 )  →  𝑘  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 22 | 6 7 8 18 19 20 21 | idlsrgmulrss1 | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑙  ⊆  𝑗 )  →  ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 )  ⊆  𝑙 ) | 
						
							| 23 |  | simpr | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑙  ⊆  𝑗 )  →  𝑙  ⊆  𝑗 ) | 
						
							| 24 | 22 23 | sstrd | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑙  ⊆  𝑗 )  →  ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 )  ⊆  𝑗 ) | 
						
							| 25 | 10 | ad2antrr | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑘  ⊆  𝑗 )  →  𝑅  ∈  Ring ) | 
						
							| 26 | 11 | ad2antrr | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑘  ⊆  𝑗 )  →  𝑙  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 27 | 12 | ad2antrr | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑘  ⊆  𝑗 )  →  𝑘  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 28 | 6 7 8 18 25 26 27 | idlsrgmulrss2 | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑘  ⊆  𝑗 )  →  ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 )  ⊆  𝑘 ) | 
						
							| 29 |  | simpr | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑘  ⊆  𝑗 )  →  𝑘  ⊆  𝑗 ) | 
						
							| 30 | 28 29 | sstrd | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  𝑘  ⊆  𝑗 )  →  ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 )  ⊆  𝑗 ) | 
						
							| 31 | 24 30 | jaodan | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  ( 𝑙  ⊆  𝑗  ∨  𝑘  ⊆  𝑗 ) )  →  ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 )  ⊆  𝑗 ) | 
						
							| 32 |  | eqid | ⊢ ( LSSum ‘ ( mulGrp ‘ 𝑅 ) )  =  ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 33 | 10 | ad2antrr | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 )  ⊆  𝑗 )  →  𝑅  ∈  Ring ) | 
						
							| 34 |  | simplr | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 )  ⊆  𝑗 )  →  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) ) | 
						
							| 35 | 11 | ad2antrr | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 )  ⊆  𝑗 )  →  𝑙  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 36 | 12 | ad2antrr | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 )  ⊆  𝑗 )  →  𝑘  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 37 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 38 |  | eqid | ⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 39 | 37 7 | lidlss | ⊢ ( 𝑙  ∈  ( LIdeal ‘ 𝑅 )  →  𝑙  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 40 | 35 39 | syl | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 )  ⊆  𝑗 )  →  𝑙  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 41 | 37 7 | lidlss | ⊢ ( 𝑘  ∈  ( LIdeal ‘ 𝑅 )  →  𝑘  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 42 | 36 41 | syl | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 )  ⊆  𝑗 )  →  𝑘  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 43 | 37 38 32 33 40 42 | ringlsmss | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 )  ⊆  𝑗 )  →  ( 𝑙 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑘 )  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 44 |  | eqid | ⊢ ( RSpan ‘ 𝑅 )  =  ( RSpan ‘ 𝑅 ) | 
						
							| 45 | 44 37 | rspssid | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑙 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑘 )  ⊆  ( Base ‘ 𝑅 ) )  →  ( 𝑙 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑘 )  ⊆  ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑙 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑘 ) ) ) | 
						
							| 46 | 33 43 45 | syl2anc | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 )  ⊆  𝑗 )  →  ( 𝑙 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑘 )  ⊆  ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑙 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑘 ) ) ) | 
						
							| 47 | 6 7 8 38 32 33 35 36 | idlsrgmulrval | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 )  ⊆  𝑗 )  →  ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 )  =  ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑙 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑘 ) ) ) | 
						
							| 48 | 46 47 | sseqtrrd | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 )  ⊆  𝑗 )  →  ( 𝑙 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑘 )  ⊆  ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) ) | 
						
							| 49 |  | simpr | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 )  ⊆  𝑗 )  →  ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 )  ⊆  𝑗 ) | 
						
							| 50 | 48 49 | sstrd | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 )  ⊆  𝑗 )  →  ( 𝑙 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑘 )  ⊆  𝑗 ) | 
						
							| 51 | 32 33 34 35 36 50 | idlmulssprm | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 )  ⊆  𝑗 )  →  ( 𝑙  ⊆  𝑗  ∨  𝑘  ⊆  𝑗 ) ) | 
						
							| 52 | 31 51 | impbida | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑗  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  ( ( 𝑙  ⊆  𝑗  ∨  𝑘  ⊆  𝑗 )  ↔  ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 )  ⊆  𝑗 ) ) | 
						
							| 53 | 52 | rabbidva | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ( 𝑙  ⊆  𝑗  ∨  𝑘  ⊆  𝑗 ) }  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 )  ⊆  𝑗 } ) | 
						
							| 54 | 13 17 53 | rspcedvd | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  →  ∃ 𝑖  ∈  ( LIdeal ‘ 𝑅 ) { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ( 𝑙  ⊆  𝑗  ∨  𝑘  ⊆  𝑗 ) }  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } ) | 
						
							| 55 |  | fvex | ⊢ ( PrmIdeal ‘ 𝑅 )  ∈  V | 
						
							| 56 | 55 | rabex | ⊢ { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ( 𝑙  ⊆  𝑗  ∨  𝑘  ⊆  𝑗 ) }  ∈  V | 
						
							| 57 | 56 | a1i | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ( 𝑙  ⊆  𝑗  ∨  𝑘  ⊆  𝑗 ) }  ∈  V ) | 
						
							| 58 | 1 54 57 | elrnmptd | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  ( 𝑙  ⊆  𝑗  ∨  𝑘  ⊆  𝑗 ) }  ∈  ran  𝑉 ) | 
						
							| 59 | 5 58 | eqeltrid | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  →  ( { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 }  ∪  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } )  ∈  ran  𝑉 ) | 
						
							| 60 | 59 | adantlr | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑋  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 } )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  →  ( { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 }  ∪  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } )  ∈  ran  𝑉 ) | 
						
							| 61 | 60 | adantr | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑋  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 } )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑌  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } )  →  ( { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 }  ∪  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } )  ∈  ran  𝑉 ) | 
						
							| 62 | 4 61 | eqeltrd | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑋  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 } )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑌  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } )  →  ( 𝑋  ∪  𝑌 )  ∈  ran  𝑉 ) | 
						
							| 63 | 62 | adantl4r | ⊢ ( ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑌  ∈  ran  𝑉 )  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑋  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 } )  ∧  𝑘  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑌  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } )  →  ( 𝑋  ∪  𝑌 )  ∈  ran  𝑉 ) | 
						
							| 64 | 55 | rabex | ⊢ { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 }  ∈  V | 
						
							| 65 | 1 64 | elrnmpti | ⊢ ( 𝑌  ∈  ran  𝑉  ↔  ∃ 𝑖  ∈  ( LIdeal ‘ 𝑅 ) 𝑌  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } ) | 
						
							| 66 |  | sseq1 | ⊢ ( 𝑖  =  𝑘  →  ( 𝑖  ⊆  𝑗  ↔  𝑘  ⊆  𝑗 ) ) | 
						
							| 67 | 66 | rabbidv | ⊢ ( 𝑖  =  𝑘  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 }  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } ) | 
						
							| 68 | 67 | eqeq2d | ⊢ ( 𝑖  =  𝑘  →  ( 𝑌  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 }  ↔  𝑌  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } ) ) | 
						
							| 69 | 68 | cbvrexvw | ⊢ ( ∃ 𝑖  ∈  ( LIdeal ‘ 𝑅 ) 𝑌  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 }  ↔  ∃ 𝑘  ∈  ( LIdeal ‘ 𝑅 ) 𝑌  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } ) | 
						
							| 70 |  | biid | ⊢ ( ∃ 𝑘  ∈  ( LIdeal ‘ 𝑅 ) 𝑌  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 }  ↔  ∃ 𝑘  ∈  ( LIdeal ‘ 𝑅 ) 𝑌  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } ) | 
						
							| 71 | 65 69 70 | 3bitri | ⊢ ( 𝑌  ∈  ran  𝑉  ↔  ∃ 𝑘  ∈  ( LIdeal ‘ 𝑅 ) 𝑌  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } ) | 
						
							| 72 | 71 | biimpi | ⊢ ( 𝑌  ∈  ran  𝑉  →  ∃ 𝑘  ∈  ( LIdeal ‘ 𝑅 ) 𝑌  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } ) | 
						
							| 73 | 72 | ad3antlr | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑌  ∈  ran  𝑉 )  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑋  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 } )  →  ∃ 𝑘  ∈  ( LIdeal ‘ 𝑅 ) 𝑌  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑘  ⊆  𝑗 } ) | 
						
							| 74 | 63 73 | r19.29a | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑌  ∈  ran  𝑉 )  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑋  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 } )  →  ( 𝑋  ∪  𝑌 )  ∈  ran  𝑉 ) | 
						
							| 75 | 74 | adantl3r | ⊢ ( ( ( ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  ran  𝑉 )  ∧  𝑌  ∈  ran  𝑉 )  ∧  𝑙  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑋  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 } )  →  ( 𝑋  ∪  𝑌 )  ∈  ran  𝑉 ) | 
						
							| 76 | 1 64 | elrnmpti | ⊢ ( 𝑋  ∈  ran  𝑉  ↔  ∃ 𝑖  ∈  ( LIdeal ‘ 𝑅 ) 𝑋  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 } ) | 
						
							| 77 |  | sseq1 | ⊢ ( 𝑖  =  𝑙  →  ( 𝑖  ⊆  𝑗  ↔  𝑙  ⊆  𝑗 ) ) | 
						
							| 78 | 77 | rabbidv | ⊢ ( 𝑖  =  𝑙  →  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 }  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 } ) | 
						
							| 79 | 78 | eqeq2d | ⊢ ( 𝑖  =  𝑙  →  ( 𝑋  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 }  ↔  𝑋  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 } ) ) | 
						
							| 80 | 79 | cbvrexvw | ⊢ ( ∃ 𝑖  ∈  ( LIdeal ‘ 𝑅 ) 𝑋  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑖  ⊆  𝑗 }  ↔  ∃ 𝑙  ∈  ( LIdeal ‘ 𝑅 ) 𝑋  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 } ) | 
						
							| 81 |  | biid | ⊢ ( ∃ 𝑙  ∈  ( LIdeal ‘ 𝑅 ) 𝑋  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 }  ↔  ∃ 𝑙  ∈  ( LIdeal ‘ 𝑅 ) 𝑋  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 } ) | 
						
							| 82 | 76 80 81 | 3bitri | ⊢ ( 𝑋  ∈  ran  𝑉  ↔  ∃ 𝑙  ∈  ( LIdeal ‘ 𝑅 ) 𝑋  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 } ) | 
						
							| 83 | 82 | biimpi | ⊢ ( 𝑋  ∈  ran  𝑉  →  ∃ 𝑙  ∈  ( LIdeal ‘ 𝑅 ) 𝑋  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 } ) | 
						
							| 84 | 83 | ad2antlr | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  ran  𝑉 )  ∧  𝑌  ∈  ran  𝑉 )  →  ∃ 𝑙  ∈  ( LIdeal ‘ 𝑅 ) 𝑋  =  { 𝑗  ∈  ( PrmIdeal ‘ 𝑅 )  ∣  𝑙  ⊆  𝑗 } ) | 
						
							| 85 | 75 84 | r19.29a | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  ran  𝑉 )  ∧  𝑌  ∈  ran  𝑉 )  →  ( 𝑋  ∪  𝑌 )  ∈  ran  𝑉 ) | 
						
							| 86 | 85 | 3impa | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  ran  𝑉  ∧  𝑌  ∈  ran  𝑉 )  →  ( 𝑋  ∪  𝑌 )  ∈  ran  𝑉 ) |