Metamath Proof Explorer


Theorem zarclsun

Description: The union of two closed sets of the Zariski topology is closed. (Contributed by Thierry Arnoux, 16-Jun-2024)

Ref Expression
Hypothesis zarclsx.1 𝑉 = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } )
Assertion zarclsun ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ ran 𝑉𝑌 ∈ ran 𝑉 ) → ( 𝑋𝑌 ) ∈ ran 𝑉 )

Proof

Step Hyp Ref Expression
1 zarclsx.1 𝑉 = ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } )
2 simpllr ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑋 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙𝑗 } ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑌 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ) → 𝑋 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙𝑗 } )
3 simpr ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑋 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙𝑗 } ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑌 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ) → 𝑌 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } )
4 2 3 uneq12d ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑋 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙𝑗 } ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑌 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ) → ( 𝑋𝑌 ) = ( { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙𝑗 } ∪ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ) )
5 unrab ( { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙𝑗 } ∪ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ) = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ( 𝑙𝑗𝑘𝑗 ) }
6 eqid ( IDLsrg ‘ 𝑅 ) = ( IDLsrg ‘ 𝑅 )
7 eqid ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 )
8 eqid ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) = ( .r ‘ ( IDLsrg ‘ 𝑅 ) )
9 simpll ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑅 ∈ CRing )
10 9 crngringd ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑅 ∈ Ring )
11 simplr ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑙 ∈ ( LIdeal ‘ 𝑅 ) )
12 simpr ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑘 ∈ ( LIdeal ‘ 𝑅 ) )
13 6 7 8 10 11 12 idlsrgmulrcl ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) → ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) ∈ ( LIdeal ‘ 𝑅 ) )
14 sseq1 ( 𝑖 = ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) → ( 𝑖𝑗 ↔ ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) ⊆ 𝑗 ) )
15 14 rabbidv ( 𝑖 = ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) ⊆ 𝑗 } )
16 15 eqeq2d ( 𝑖 = ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) → ( { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ( 𝑙𝑗𝑘𝑗 ) } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ↔ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ( 𝑙𝑗𝑘𝑗 ) } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) ⊆ 𝑗 } ) )
17 16 adantl ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑖 = ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) ) → ( { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ( 𝑙𝑗𝑘𝑗 ) } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ↔ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ( 𝑙𝑗𝑘𝑗 ) } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) ⊆ 𝑗 } ) )
18 eqid ( .r𝑅 ) = ( .r𝑅 )
19 9 ad2antrr ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑙𝑗 ) → 𝑅 ∈ CRing )
20 11 ad2antrr ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑙𝑗 ) → 𝑙 ∈ ( LIdeal ‘ 𝑅 ) )
21 12 ad2antrr ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑙𝑗 ) → 𝑘 ∈ ( LIdeal ‘ 𝑅 ) )
22 6 7 8 18 19 20 21 idlsrgmulrss1 ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑙𝑗 ) → ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) ⊆ 𝑙 )
23 simpr ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑙𝑗 ) → 𝑙𝑗 )
24 22 23 sstrd ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑙𝑗 ) → ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) ⊆ 𝑗 )
25 10 ad2antrr ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑘𝑗 ) → 𝑅 ∈ Ring )
26 11 ad2antrr ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑘𝑗 ) → 𝑙 ∈ ( LIdeal ‘ 𝑅 ) )
27 12 ad2antrr ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑘𝑗 ) → 𝑘 ∈ ( LIdeal ‘ 𝑅 ) )
28 6 7 8 18 25 26 27 idlsrgmulrss2 ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑘𝑗 ) → ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) ⊆ 𝑘 )
29 simpr ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑘𝑗 ) → 𝑘𝑗 )
30 28 29 sstrd ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑘𝑗 ) → ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) ⊆ 𝑗 )
31 24 30 jaodan ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ( 𝑙𝑗𝑘𝑗 ) ) → ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) ⊆ 𝑗 )
32 eqid ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) = ( LSSum ‘ ( mulGrp ‘ 𝑅 ) )
33 10 ad2antrr ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) ⊆ 𝑗 ) → 𝑅 ∈ Ring )
34 simplr ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) ⊆ 𝑗 ) → 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) )
35 11 ad2antrr ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) ⊆ 𝑗 ) → 𝑙 ∈ ( LIdeal ‘ 𝑅 ) )
36 12 ad2antrr ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) ⊆ 𝑗 ) → 𝑘 ∈ ( LIdeal ‘ 𝑅 ) )
37 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
38 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
39 37 7 lidlss ( 𝑙 ∈ ( LIdeal ‘ 𝑅 ) → 𝑙 ⊆ ( Base ‘ 𝑅 ) )
40 35 39 syl ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) ⊆ 𝑗 ) → 𝑙 ⊆ ( Base ‘ 𝑅 ) )
41 37 7 lidlss ( 𝑘 ∈ ( LIdeal ‘ 𝑅 ) → 𝑘 ⊆ ( Base ‘ 𝑅 ) )
42 36 41 syl ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) ⊆ 𝑗 ) → 𝑘 ⊆ ( Base ‘ 𝑅 ) )
43 37 38 32 33 40 42 ringlsmss ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) ⊆ 𝑗 ) → ( 𝑙 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑘 ) ⊆ ( Base ‘ 𝑅 ) )
44 eqid ( RSpan ‘ 𝑅 ) = ( RSpan ‘ 𝑅 )
45 44 37 rspssid ( ( 𝑅 ∈ Ring ∧ ( 𝑙 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑘 ) ⊆ ( Base ‘ 𝑅 ) ) → ( 𝑙 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑘 ) ⊆ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑙 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑘 ) ) )
46 33 43 45 syl2anc ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) ⊆ 𝑗 ) → ( 𝑙 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑘 ) ⊆ ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑙 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑘 ) ) )
47 6 7 8 38 32 33 35 36 idlsrgmulrval ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) ⊆ 𝑗 ) → ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) = ( ( RSpan ‘ 𝑅 ) ‘ ( 𝑙 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑘 ) ) )
48 46 47 sseqtrrd ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) ⊆ 𝑗 ) → ( 𝑙 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑘 ) ⊆ ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) )
49 simpr ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) ⊆ 𝑗 ) → ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) ⊆ 𝑗 )
50 48 49 sstrd ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) ⊆ 𝑗 ) → ( 𝑙 ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) 𝑘 ) ⊆ 𝑗 )
51 32 33 34 35 36 50 idlmulssprm ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) ⊆ 𝑗 ) → ( 𝑙𝑗𝑘𝑗 ) )
52 31 51 impbida ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ) → ( ( 𝑙𝑗𝑘𝑗 ) ↔ ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) ⊆ 𝑗 ) )
53 52 rabbidva ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ( 𝑙𝑗𝑘𝑗 ) } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ( 𝑙 ( .r ‘ ( IDLsrg ‘ 𝑅 ) ) 𝑘 ) ⊆ 𝑗 } )
54 13 17 53 rspcedvd ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) → ∃ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ( 𝑙𝑗𝑘𝑗 ) } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } )
55 fvex ( PrmIdeal ‘ 𝑅 ) ∈ V
56 55 rabex { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ( 𝑙𝑗𝑘𝑗 ) } ∈ V
57 56 a1i ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ( 𝑙𝑗𝑘𝑗 ) } ∈ V )
58 1 54 57 elrnmptd ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ ( 𝑙𝑗𝑘𝑗 ) } ∈ ran 𝑉 )
59 5 58 eqeltrid ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) → ( { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙𝑗 } ∪ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ) ∈ ran 𝑉 )
60 59 adantlr ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑋 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙𝑗 } ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) → ( { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙𝑗 } ∪ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ) ∈ ran 𝑉 )
61 60 adantr ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑋 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙𝑗 } ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑌 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ) → ( { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙𝑗 } ∪ { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ) ∈ ran 𝑉 )
62 4 61 eqeltrd ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑋 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙𝑗 } ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑌 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ) → ( 𝑋𝑌 ) ∈ ran 𝑉 )
63 62 adantl4r ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑌 ∈ ran 𝑉 ) ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑋 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙𝑗 } ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑌 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ) → ( 𝑋𝑌 ) ∈ ran 𝑉 )
64 55 rabex { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ∈ V
65 1 64 elrnmpti ( 𝑌 ∈ ran 𝑉 ↔ ∃ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) 𝑌 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } )
66 sseq1 ( 𝑖 = 𝑘 → ( 𝑖𝑗𝑘𝑗 ) )
67 66 rabbidv ( 𝑖 = 𝑘 → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } )
68 67 eqeq2d ( 𝑖 = 𝑘 → ( 𝑌 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ↔ 𝑌 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ) )
69 68 cbvrexvw ( ∃ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) 𝑌 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ↔ ∃ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) 𝑌 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } )
70 biid ( ∃ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) 𝑌 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } ↔ ∃ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) 𝑌 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } )
71 65 69 70 3bitri ( 𝑌 ∈ ran 𝑉 ↔ ∃ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) 𝑌 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } )
72 71 biimpi ( 𝑌 ∈ ran 𝑉 → ∃ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) 𝑌 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } )
73 72 ad3antlr ( ( ( ( 𝑅 ∈ CRing ∧ 𝑌 ∈ ran 𝑉 ) ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑋 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙𝑗 } ) → ∃ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) 𝑌 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑘𝑗 } )
74 63 73 r19.29a ( ( ( ( 𝑅 ∈ CRing ∧ 𝑌 ∈ ran 𝑉 ) ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑋 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙𝑗 } ) → ( 𝑋𝑌 ) ∈ ran 𝑉 )
75 74 adantl3r ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ ran 𝑉 ) ∧ 𝑌 ∈ ran 𝑉 ) ∧ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑋 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙𝑗 } ) → ( 𝑋𝑌 ) ∈ ran 𝑉 )
76 1 64 elrnmpti ( 𝑋 ∈ ran 𝑉 ↔ ∃ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) 𝑋 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } )
77 sseq1 ( 𝑖 = 𝑙 → ( 𝑖𝑗𝑙𝑗 ) )
78 77 rabbidv ( 𝑖 = 𝑙 → { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙𝑗 } )
79 78 eqeq2d ( 𝑖 = 𝑙 → ( 𝑋 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ↔ 𝑋 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙𝑗 } ) )
80 79 cbvrexvw ( ∃ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) 𝑋 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑖𝑗 } ↔ ∃ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) 𝑋 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙𝑗 } )
81 biid ( ∃ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) 𝑋 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙𝑗 } ↔ ∃ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) 𝑋 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙𝑗 } )
82 76 80 81 3bitri ( 𝑋 ∈ ran 𝑉 ↔ ∃ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) 𝑋 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙𝑗 } )
83 82 biimpi ( 𝑋 ∈ ran 𝑉 → ∃ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) 𝑋 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙𝑗 } )
84 83 ad2antlr ( ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ ran 𝑉 ) ∧ 𝑌 ∈ ran 𝑉 ) → ∃ 𝑙 ∈ ( LIdeal ‘ 𝑅 ) 𝑋 = { 𝑗 ∈ ( PrmIdeal ‘ 𝑅 ) ∣ 𝑙𝑗 } )
85 75 84 r19.29a ( ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ ran 𝑉 ) ∧ 𝑌 ∈ ran 𝑉 ) → ( 𝑋𝑌 ) ∈ ran 𝑉 )
86 85 3impa ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ ran 𝑉𝑌 ∈ ran 𝑉 ) → ( 𝑋𝑌 ) ∈ ran 𝑉 )