Metamath Proof Explorer


Theorem zarclsun

Description: The union of two closed sets of the Zariski topology is closed. (Contributed by Thierry Arnoux, 16-Jun-2024)

Ref Expression
Hypothesis zarclsx.1 V = i LIdeal R j PrmIdeal R | i j
Assertion zarclsun R CRing X ran V Y ran V X Y ran V

Proof

Step Hyp Ref Expression
1 zarclsx.1 V = i LIdeal R j PrmIdeal R | i j
2 simpllr R CRing l LIdeal R X = j PrmIdeal R | l j k LIdeal R Y = j PrmIdeal R | k j X = j PrmIdeal R | l j
3 simpr R CRing l LIdeal R X = j PrmIdeal R | l j k LIdeal R Y = j PrmIdeal R | k j Y = j PrmIdeal R | k j
4 2 3 uneq12d R CRing l LIdeal R X = j PrmIdeal R | l j k LIdeal R Y = j PrmIdeal R | k j X Y = j PrmIdeal R | l j j PrmIdeal R | k j
5 unrab j PrmIdeal R | l j j PrmIdeal R | k j = j PrmIdeal R | l j k j
6 eqid IDLsrg R = IDLsrg R
7 eqid LIdeal R = LIdeal R
8 eqid IDLsrg R = IDLsrg R
9 simpll R CRing l LIdeal R k LIdeal R R CRing
10 9 crngringd R CRing l LIdeal R k LIdeal R R Ring
11 simplr R CRing l LIdeal R k LIdeal R l LIdeal R
12 simpr R CRing l LIdeal R k LIdeal R k LIdeal R
13 6 7 8 10 11 12 idlsrgmulrcl R CRing l LIdeal R k LIdeal R l IDLsrg R k LIdeal R
14 sseq1 i = l IDLsrg R k i j l IDLsrg R k j
15 14 rabbidv i = l IDLsrg R k j PrmIdeal R | i j = j PrmIdeal R | l IDLsrg R k j
16 15 eqeq2d i = l IDLsrg R k j PrmIdeal R | l j k j = j PrmIdeal R | i j j PrmIdeal R | l j k j = j PrmIdeal R | l IDLsrg R k j
17 16 adantl R CRing l LIdeal R k LIdeal R i = l IDLsrg R k j PrmIdeal R | l j k j = j PrmIdeal R | i j j PrmIdeal R | l j k j = j PrmIdeal R | l IDLsrg R k j
18 eqid R = R
19 9 ad2antrr R CRing l LIdeal R k LIdeal R j PrmIdeal R l j R CRing
20 11 ad2antrr R CRing l LIdeal R k LIdeal R j PrmIdeal R l j l LIdeal R
21 12 ad2antrr R CRing l LIdeal R k LIdeal R j PrmIdeal R l j k LIdeal R
22 6 7 8 18 19 20 21 idlsrgmulrss1 R CRing l LIdeal R k LIdeal R j PrmIdeal R l j l IDLsrg R k l
23 simpr R CRing l LIdeal R k LIdeal R j PrmIdeal R l j l j
24 22 23 sstrd R CRing l LIdeal R k LIdeal R j PrmIdeal R l j l IDLsrg R k j
25 10 ad2antrr R CRing l LIdeal R k LIdeal R j PrmIdeal R k j R Ring
26 11 ad2antrr R CRing l LIdeal R k LIdeal R j PrmIdeal R k j l LIdeal R
27 12 ad2antrr R CRing l LIdeal R k LIdeal R j PrmIdeal R k j k LIdeal R
28 6 7 8 18 25 26 27 idlsrgmulrss2 R CRing l LIdeal R k LIdeal R j PrmIdeal R k j l IDLsrg R k k
29 simpr R CRing l LIdeal R k LIdeal R j PrmIdeal R k j k j
30 28 29 sstrd R CRing l LIdeal R k LIdeal R j PrmIdeal R k j l IDLsrg R k j
31 24 30 jaodan R CRing l LIdeal R k LIdeal R j PrmIdeal R l j k j l IDLsrg R k j
32 eqid LSSum mulGrp R = LSSum mulGrp R
33 10 ad2antrr R CRing l LIdeal R k LIdeal R j PrmIdeal R l IDLsrg R k j R Ring
34 simplr R CRing l LIdeal R k LIdeal R j PrmIdeal R l IDLsrg R k j j PrmIdeal R
35 11 ad2antrr R CRing l LIdeal R k LIdeal R j PrmIdeal R l IDLsrg R k j l LIdeal R
36 12 ad2antrr R CRing l LIdeal R k LIdeal R j PrmIdeal R l IDLsrg R k j k LIdeal R
37 eqid Base R = Base R
38 eqid mulGrp R = mulGrp R
39 37 7 lidlss l LIdeal R l Base R
40 35 39 syl R CRing l LIdeal R k LIdeal R j PrmIdeal R l IDLsrg R k j l Base R
41 37 7 lidlss k LIdeal R k Base R
42 36 41 syl R CRing l LIdeal R k LIdeal R j PrmIdeal R l IDLsrg R k j k Base R
43 37 38 32 33 40 42 ringlsmss R CRing l LIdeal R k LIdeal R j PrmIdeal R l IDLsrg R k j l LSSum mulGrp R k Base R
44 eqid RSpan R = RSpan R
45 44 37 rspssid R Ring l LSSum mulGrp R k Base R l LSSum mulGrp R k RSpan R l LSSum mulGrp R k
46 33 43 45 syl2anc R CRing l LIdeal R k LIdeal R j PrmIdeal R l IDLsrg R k j l LSSum mulGrp R k RSpan R l LSSum mulGrp R k
47 6 7 8 38 32 33 35 36 idlsrgmulrval R CRing l LIdeal R k LIdeal R j PrmIdeal R l IDLsrg R k j l IDLsrg R k = RSpan R l LSSum mulGrp R k
48 46 47 sseqtrrd R CRing l LIdeal R k LIdeal R j PrmIdeal R l IDLsrg R k j l LSSum mulGrp R k l IDLsrg R k
49 simpr R CRing l LIdeal R k LIdeal R j PrmIdeal R l IDLsrg R k j l IDLsrg R k j
50 48 49 sstrd R CRing l LIdeal R k LIdeal R j PrmIdeal R l IDLsrg R k j l LSSum mulGrp R k j
51 32 33 34 35 36 50 idlmulssprm R CRing l LIdeal R k LIdeal R j PrmIdeal R l IDLsrg R k j l j k j
52 31 51 impbida R CRing l LIdeal R k LIdeal R j PrmIdeal R l j k j l IDLsrg R k j
53 52 rabbidva R CRing l LIdeal R k LIdeal R j PrmIdeal R | l j k j = j PrmIdeal R | l IDLsrg R k j
54 13 17 53 rspcedvd R CRing l LIdeal R k LIdeal R i LIdeal R j PrmIdeal R | l j k j = j PrmIdeal R | i j
55 fvex PrmIdeal R V
56 55 rabex j PrmIdeal R | l j k j V
57 56 a1i R CRing l LIdeal R k LIdeal R j PrmIdeal R | l j k j V
58 1 54 57 elrnmptd R CRing l LIdeal R k LIdeal R j PrmIdeal R | l j k j ran V
59 5 58 eqeltrid R CRing l LIdeal R k LIdeal R j PrmIdeal R | l j j PrmIdeal R | k j ran V
60 59 adantlr R CRing l LIdeal R X = j PrmIdeal R | l j k LIdeal R j PrmIdeal R | l j j PrmIdeal R | k j ran V
61 60 adantr R CRing l LIdeal R X = j PrmIdeal R | l j k LIdeal R Y = j PrmIdeal R | k j j PrmIdeal R | l j j PrmIdeal R | k j ran V
62 4 61 eqeltrd R CRing l LIdeal R X = j PrmIdeal R | l j k LIdeal R Y = j PrmIdeal R | k j X Y ran V
63 62 adantl4r R CRing Y ran V l LIdeal R X = j PrmIdeal R | l j k LIdeal R Y = j PrmIdeal R | k j X Y ran V
64 55 rabex j PrmIdeal R | i j V
65 1 64 elrnmpti Y ran V i LIdeal R Y = j PrmIdeal R | i j
66 sseq1 i = k i j k j
67 66 rabbidv i = k j PrmIdeal R | i j = j PrmIdeal R | k j
68 67 eqeq2d i = k Y = j PrmIdeal R | i j Y = j PrmIdeal R | k j
69 68 cbvrexvw i LIdeal R Y = j PrmIdeal R | i j k LIdeal R Y = j PrmIdeal R | k j
70 biid k LIdeal R Y = j PrmIdeal R | k j k LIdeal R Y = j PrmIdeal R | k j
71 65 69 70 3bitri Y ran V k LIdeal R Y = j PrmIdeal R | k j
72 71 biimpi Y ran V k LIdeal R Y = j PrmIdeal R | k j
73 72 ad3antlr R CRing Y ran V l LIdeal R X = j PrmIdeal R | l j k LIdeal R Y = j PrmIdeal R | k j
74 63 73 r19.29a R CRing Y ran V l LIdeal R X = j PrmIdeal R | l j X Y ran V
75 74 adantl3r R CRing X ran V Y ran V l LIdeal R X = j PrmIdeal R | l j X Y ran V
76 1 64 elrnmpti X ran V i LIdeal R X = j PrmIdeal R | i j
77 sseq1 i = l i j l j
78 77 rabbidv i = l j PrmIdeal R | i j = j PrmIdeal R | l j
79 78 eqeq2d i = l X = j PrmIdeal R | i j X = j PrmIdeal R | l j
80 79 cbvrexvw i LIdeal R X = j PrmIdeal R | i j l LIdeal R X = j PrmIdeal R | l j
81 biid l LIdeal R X = j PrmIdeal R | l j l LIdeal R X = j PrmIdeal R | l j
82 76 80 81 3bitri X ran V l LIdeal R X = j PrmIdeal R | l j
83 82 biimpi X ran V l LIdeal R X = j PrmIdeal R | l j
84 83 ad2antlr R CRing X ran V Y ran V l LIdeal R X = j PrmIdeal R | l j
85 75 84 r19.29a R CRing X ran V Y ran V X Y ran V
86 85 3impa R CRing X ran V Y ran V X Y ran V