| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zarclsx.1 |  | 
						
							| 2 |  | simpllr |  | 
						
							| 3 |  | simpr |  | 
						
							| 4 | 2 3 | uneq12d |  | 
						
							| 5 |  | unrab |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 |  | simpll |  | 
						
							| 10 | 9 | crngringd |  | 
						
							| 11 |  | simplr |  | 
						
							| 12 |  | simpr |  | 
						
							| 13 | 6 7 8 10 11 12 | idlsrgmulrcl |  | 
						
							| 14 |  | sseq1 |  | 
						
							| 15 | 14 | rabbidv |  | 
						
							| 16 | 15 | eqeq2d |  | 
						
							| 17 | 16 | adantl |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 | 9 | ad2antrr |  | 
						
							| 20 | 11 | ad2antrr |  | 
						
							| 21 | 12 | ad2antrr |  | 
						
							| 22 | 6 7 8 18 19 20 21 | idlsrgmulrss1 |  | 
						
							| 23 |  | simpr |  | 
						
							| 24 | 22 23 | sstrd |  | 
						
							| 25 | 10 | ad2antrr |  | 
						
							| 26 | 11 | ad2antrr |  | 
						
							| 27 | 12 | ad2antrr |  | 
						
							| 28 | 6 7 8 18 25 26 27 | idlsrgmulrss2 |  | 
						
							| 29 |  | simpr |  | 
						
							| 30 | 28 29 | sstrd |  | 
						
							| 31 | 24 30 | jaodan |  | 
						
							| 32 |  | eqid |  | 
						
							| 33 | 10 | ad2antrr |  | 
						
							| 34 |  | simplr |  | 
						
							| 35 | 11 | ad2antrr |  | 
						
							| 36 | 12 | ad2antrr |  | 
						
							| 37 |  | eqid |  | 
						
							| 38 |  | eqid |  | 
						
							| 39 | 37 7 | lidlss |  | 
						
							| 40 | 35 39 | syl |  | 
						
							| 41 | 37 7 | lidlss |  | 
						
							| 42 | 36 41 | syl |  | 
						
							| 43 | 37 38 32 33 40 42 | ringlsmss |  | 
						
							| 44 |  | eqid |  | 
						
							| 45 | 44 37 | rspssid |  | 
						
							| 46 | 33 43 45 | syl2anc |  | 
						
							| 47 | 6 7 8 38 32 33 35 36 | idlsrgmulrval |  | 
						
							| 48 | 46 47 | sseqtrrd |  | 
						
							| 49 |  | simpr |  | 
						
							| 50 | 48 49 | sstrd |  | 
						
							| 51 | 32 33 34 35 36 50 | idlmulssprm |  | 
						
							| 52 | 31 51 | impbida |  | 
						
							| 53 | 52 | rabbidva |  | 
						
							| 54 | 13 17 53 | rspcedvd |  | 
						
							| 55 |  | fvex |  | 
						
							| 56 | 55 | rabex |  | 
						
							| 57 | 56 | a1i |  | 
						
							| 58 | 1 54 57 | elrnmptd |  | 
						
							| 59 | 5 58 | eqeltrid |  | 
						
							| 60 | 59 | adantlr |  | 
						
							| 61 | 60 | adantr |  | 
						
							| 62 | 4 61 | eqeltrd |  | 
						
							| 63 | 62 | adantl4r |  | 
						
							| 64 | 55 | rabex |  | 
						
							| 65 | 1 64 | elrnmpti |  | 
						
							| 66 |  | sseq1 |  | 
						
							| 67 | 66 | rabbidv |  | 
						
							| 68 | 67 | eqeq2d |  | 
						
							| 69 | 68 | cbvrexvw |  | 
						
							| 70 |  | biid |  | 
						
							| 71 | 65 69 70 | 3bitri |  | 
						
							| 72 | 71 | biimpi |  | 
						
							| 73 | 72 | ad3antlr |  | 
						
							| 74 | 63 73 | r19.29a |  | 
						
							| 75 | 74 | adantl3r |  | 
						
							| 76 | 1 64 | elrnmpti |  | 
						
							| 77 |  | sseq1 |  | 
						
							| 78 | 77 | rabbidv |  | 
						
							| 79 | 78 | eqeq2d |  | 
						
							| 80 | 79 | cbvrexvw |  | 
						
							| 81 |  | biid |  | 
						
							| 82 | 76 80 81 | 3bitri |  | 
						
							| 83 | 82 | biimpi |  | 
						
							| 84 | 83 | ad2antlr |  | 
						
							| 85 | 75 84 | r19.29a |  | 
						
							| 86 | 85 | 3impa |  |