Step |
Hyp |
Ref |
Expression |
1 |
|
zarclsx.1 |
|
2 |
|
simpllr |
|
3 |
|
simpr |
|
4 |
2 3
|
uneq12d |
|
5 |
|
unrab |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
|
simpll |
|
10 |
9
|
crngringd |
|
11 |
|
simplr |
|
12 |
|
simpr |
|
13 |
6 7 8 10 11 12
|
idlsrgmulrcl |
|
14 |
|
sseq1 |
|
15 |
14
|
rabbidv |
|
16 |
15
|
eqeq2d |
|
17 |
16
|
adantl |
|
18 |
|
eqid |
|
19 |
9
|
ad2antrr |
|
20 |
11
|
ad2antrr |
|
21 |
12
|
ad2antrr |
|
22 |
6 7 8 18 19 20 21
|
idlsrgmulrss1 |
|
23 |
|
simpr |
|
24 |
22 23
|
sstrd |
|
25 |
10
|
ad2antrr |
|
26 |
11
|
ad2antrr |
|
27 |
12
|
ad2antrr |
|
28 |
6 7 8 18 25 26 27
|
idlsrgmulrss2 |
|
29 |
|
simpr |
|
30 |
28 29
|
sstrd |
|
31 |
24 30
|
jaodan |
|
32 |
|
eqid |
|
33 |
10
|
ad2antrr |
|
34 |
|
simplr |
|
35 |
11
|
ad2antrr |
|
36 |
12
|
ad2antrr |
|
37 |
|
eqid |
|
38 |
|
eqid |
|
39 |
37 7
|
lidlss |
|
40 |
35 39
|
syl |
|
41 |
37 7
|
lidlss |
|
42 |
36 41
|
syl |
|
43 |
37 38 32 33 40 42
|
ringlsmss |
|
44 |
|
eqid |
|
45 |
44 37
|
rspssid |
|
46 |
33 43 45
|
syl2anc |
|
47 |
6 7 8 38 32 33 35 36
|
idlsrgmulrval |
|
48 |
46 47
|
sseqtrrd |
|
49 |
|
simpr |
|
50 |
48 49
|
sstrd |
|
51 |
32 33 34 35 36 50
|
idlmulssprm |
|
52 |
31 51
|
impbida |
|
53 |
52
|
rabbidva |
|
54 |
13 17 53
|
rspcedvd |
|
55 |
|
fvex |
|
56 |
55
|
rabex |
|
57 |
56
|
a1i |
|
58 |
1 54 57
|
elrnmptd |
|
59 |
5 58
|
eqeltrid |
|
60 |
59
|
adantlr |
|
61 |
60
|
adantr |
|
62 |
4 61
|
eqeltrd |
|
63 |
62
|
adantl4r |
|
64 |
55
|
rabex |
|
65 |
1 64
|
elrnmpti |
|
66 |
|
sseq1 |
|
67 |
66
|
rabbidv |
|
68 |
67
|
eqeq2d |
|
69 |
68
|
cbvrexvw |
|
70 |
|
biid |
|
71 |
65 69 70
|
3bitri |
|
72 |
71
|
biimpi |
|
73 |
72
|
ad3antlr |
|
74 |
63 73
|
r19.29a |
|
75 |
74
|
adantl3r |
|
76 |
1 64
|
elrnmpti |
|
77 |
|
sseq1 |
|
78 |
77
|
rabbidv |
|
79 |
78
|
eqeq2d |
|
80 |
79
|
cbvrexvw |
|
81 |
|
biid |
|
82 |
76 80 81
|
3bitri |
|
83 |
82
|
biimpi |
|
84 |
83
|
ad2antlr |
|
85 |
75 84
|
r19.29a |
|
86 |
85
|
3impa |
|